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Abstract

An equivalent wall impedance describing the electro-
magnetic boundary conditions at corrugated pipe walls is
introduced in the context of a general perturbative approach
for computing the longitudinal and transverse beam cou-
pling impedances in complex heterogeneous pipes.

INTRODUCTION

Coupling impedances are a powerful tool for studying
the interaction between a charged particle beam and the
surrounding chamber. Unfortunately, coupling impedances
can be usually computed only by numerical methods lead-
ing to computationally intensive design optimization pro-
cedures.

The combined occurrence of complex geometrical fea-
tures and/or the use of several different wall materials,
make the electromagnetic boundary value problem analyt-
ically almost untractable. As a matter of fact, only a few
analytic solutions for coupling impedances are available,
for simple cases where, e.g., the Laplacian is separable in
the pipe cross-section coordinates, and the boundary con-
ditions are very simple too (e.g., perfect conductors).

In this paper we estimate the longitudinal and transverse
coupling impedances for a pipe with corrugated walls us-
ing the general framework presented in [1] and summarized
below, using an impedance boundary condition (b.c.) of the
Leont́ovich type, to account for the corrugations. An appli-
cation to a candidate LHC geometry is included.

COUPLING IMPEDANCES
IN COMPLEX PIPES

According to [1] the longitudinal and transverse beam
coupling impedancesZ0,‖(ω) and ¯̄Z0,⊥(ω) of a simple,
unperturbed pipe (e.g., circular, perfectly conducting) as-
sumed known, can be related to thoseZ‖(ω), ¯̄Z⊥(ω) of an-
other pipe differing from the former by someperturbation
in the boundary geometry and/or constitutive properties, as
follows (beam at�r = 0) 1:
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1The beam impedances are obviously independent of the total beam
charge, as the field in (1) is proportional toQ.
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wherec = (ε0µ0)−1/2 is the speed of light in vacuum,
Y0 = (ε0/µ0)1/2 is the vacuum characteristic admittance,
ε0 and µ0 being the vacuum permittivity and permeabil-
ity, β0 is the relativistic factor,Q is the total beam charge,
�E(sol.), �E(irr.) are the solenoidal and irrotational parts of
the electric field, a suffix ”0” identifies theunperturbed
quantities, and an impedance (Leontóvich) boundary con-
dition is assumed to hold at the (perturbed) pipe wall∂S:

ûn × (ûn × �E − Zwall
�H)∂S = 0, (3)

where Zwall is the pipe-wall complex characteristic
impedance and̂un is the unit vector normal to∂S.

The first integral term on the r.h.s of (1) and (2) is
nonzero if and only ifZwall is not identically zero on∂S,
and accounts for the effect of the (complex) wall conduc-
tivity. The second integral term on the r.h.s. of (1) and (2),
on the other hand, accounts for the effect of the geometrical
perturbation of the boundary, and is non-zero if and only if
the unperturbed axial field componentE0z is not identi-
cally zero on∂S. Letting �E0 in place of �E in (1) and (2),
one obtains a first order perturbative formula for the beam
coupling impedances in theperturbed pipe.

CORRUGATED BEAM PIPES

Let
�r = �rb(θ) = �Rb(θ) + δ �R(θ), (4)

the (transverse) position of a point on the (perturbed) pipe
boundary∂S, where�Rb(θ) defines the unperturbed bound-
ary ∂S0, δ �R(θ) describes thez-independent roughness,
andθ is the polar angle. To first order in the corrugations,

E∗
0z(�rb) ∼ E∗

0z(�Rb) + ∇E∗
0z|�Rb

· δ �R. (5)

The first term in (5) is obviously zero (the unperturbed
boundary is by assumption a perfect conductor). The un-
perturbed longitudinal field is related to the potentialΦ0,

E∗
0z = −jk(1 − β2

0)Φ∗
0, (6)
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whereby
�E∗

0 = −∇Φ∗
0, (7)

so that (5) becomes

E∗
0z(�rb) ∼ jk(1 − β2

0)E∗
0n(�Rb)ûn0(θ) · δ �R. (8)

since the tangential component of�E0 at the unperturbed
boundary (perfect conductor) is zero .

Accordingly, the integral in (1) which accounts for the
effects of the geometrical perturbation of the pipe boundary
can be written, to first order:

I‖ = −jk(1 − β2
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∮
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ûn(�)·δ �R(�) |E∗
0n(�)|2 d� (9)

where� is a curvilinear coordinate onδS0.
Similarly, to first order in the corrugation termδ �R,
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Accordingly, the integral in (2) which accounts for the ef-
fects of the geometrical perturbation of the pipe boundary
can be written, to first order:
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Comparison of (9), (11) to (1) and (2) shows that the
roughnessδ �R(θ) is ”equivalent” to a non-uniform, purely
reactive impedance loading

Z
(equiv.)
wall = −jk(1 − jβ2

0)Z0ûn0(θ) · δ �R(θ), (12)

laid down on the unperturbeded pipe wall. It is also seen
that, for the special case whereδR(θ), is a random process,
its statistical moments are simply related to those of the
equivalent wall-impedance (12). These findings are more
or less obviously related to the general formalism devel-
oped in [3] for describing (weakly) irregular surfaces in
terms of impedance boundary conditions.

CORRUGATED CIRCULAR PIPE

As a simplest example, we refer to a corrugated perfectly
conducting circular pipe. The unperturbed geometry is a
smooth perfectly conducting pipe of radiusR. The unper-
turbed field produced at�r by a beam at�r0 is 2
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{
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}

,

(13)

2The field (13) is the vacuum field produced by beam at�r0, and its
image at�r0(R/r0)2.

From (13) one readily obtains
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and:
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Now consider the perturbed case of a circular pipe with
uniform wall impedanceZwall. Using eq.s (1) and (2) with
�E = �E0 together with (14) and (15), one readily obtains

Z‖ =
Zwall

2πR
, ¯̄Z⊥ =

Zwall

πk0R3
(ûxûx + ûyûy), (16)

in agreement with the known exact result [2]. One is there-
fore led to guess that eq.s (9), (11) should be likewise ac-
curate for computing the couipling impedances contributed
by corrugations. Hence, for a perfectly conducting pipe

Z‖ =
〈Z(equiv.)

wall 〉
2πR

, ¯̄Z⊥=
〈Z(equiv.)

wall 〉
πk0R3

(ûxûx+ûyûy), (17)

where

〈Z(equiv.)
wall 〉 = −jk(1 − β2)Z0

∮
δS0

r̂ ·δ �R(�)d�

2πR
(18)

is the circumferential average of (12). It is seen that suit-
able (z-independent) corrugations can be used to compen-
sate the remaining reactive terms in the beam coupling
impedance at a specific frequency.

LHC IMPEDANCE BUDGET

The candidate LHC geometry includes two corrugated
sections as shown in Fig.1 below. The corrugations con-

Figure 1: A simplified candidate LHC geometry.

tributions to the (reactive) impedance budget can be eas-
ily computed using (13) for the unperturbed field, with
R ≈ 14mm. Assumingβ ≈ 0.987, it is found from (18)
and Fig.1 that〈X(equiv.)

wall 〉 ≈ −1.467·10−8ohm at the beam
circulation frequency (≈ 11KHz).
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