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Abstract

This work is a three-dimensional stability study based
on the modal analysis for a continuous beam with a
Kapchinskij-Vladimirskij (KV) distribution. The analy-
sis is carried out self-consistently within the context of
linearized Vlasov-Maxwell equations and electrostatic ap-
proximation. The emphasis is on investigating the coupling
between longitudinal and transverse perturbations in the
high-intensity region. The interaction between the trans-
verse modes supported by the KV distribution and those
modes sustainable by the cold beam is examined. We found
two classes of coupling modes that would not exist if the
longitudinal and the transverse perturbations are treated
separately. The effects of wall impedance on beam stability
is also studied and numerical examples are presented.

INTRODUCTION

In a customary stability analysis of a continuous beam in
an accelerator or storage ring, longitudinal and transverse
effects are treated separately, an approximation that is valid
because space-charge forces are relatively weak and char-
acteristic frequencies differ by orders of magnitude. For a
very intense beam like the one in the proposed heavy ion
fusion facilities, the space-charge forces are large and all
frequencies are of the order of the plasma frequency, the
separated treatment of longitudinal and transverse pertur-
bations may not be applicable. Such a concern was raised
more than two decades ago in the heavy ion fusion stud-
ies. Since then, some investigations have been exploited in
attempt to address the issue by improving the earlier sta-
bility theories for laminar beams or nearly laminar beams.
In a study of two-dimensional, axisymmetric perturbations
in a beam with a KV distribution, an instability caused by
the coupling between the longitudinal and transverse mo-
tion was discovered in theory.[1] Later computer simula-
tions confirmed the prediction and found this kind of in-
stability to be a mechanism for energy exchange between
the longitudinal and transverse motions in the beams with
high anisotropy in temperature.[2-4] These findings and
many fine papers published afterward[5-11] mark a suc-
cess in exploring the intense beam stability. However,
to date, the rigorous theory, though not necessarily com-
puter simulations, is still left in the axisymmetric geometry
and the three-dimensional theory remains to be improved.
The purpose of this work is to extend the earlier investiga-
tion of axisymmetric modes in a KV beam to a full three-
dimensional stability study. It is hoped that the approach

∗Research supported by Los Alamos National Laboratory under the
auspices of the US Department of Energy.

† TWANG@LANL.GOV

and the results of this work will be helpful in the exploring
and understanding of beam stability in non-axisymmetric
geometry.

THEORETICAL MODEL

We consider a continuous, nonrelativistic beam of circu-
lar cross section with radius a and constant particle density
ρ0 propagating inside a conducting pipe of radius b and
arbitrary wall impedance. A cylindrical coordinate sys-
tem (r, ϕ, z) is chosen such that the beam is propagating
in the positive z direction and the z axis coincides with
the central axis of the beam. The equilibrium state of the
beam is maintained by a constant linear external transverse
focusing force which can be represented as Mν2

0r where
M is the mass of a beam particle and νo is the betatron
frequency in the absence of the beam’s self-field. Tak-
ing the self-field of the beam into account, one finds the
relation ν2 = ν2

0 − (ω2
p/2), between the effective beta-

tron frequency of particles ν, and the plasma frequency
ωp = (4πq2ρ0/M)1/2, where q is the charge of a beam
particle. We assume the equilibrium distribution of beam
particles in the phase space is described by the distribution
function f0(x,v) that is a product of the KV distribution in
the transverse direction and a delta function of the longitu-
dinal speed, i.e.

f0(x,v) =
ρ0

π
δ
[
v2
⊥ − ν2(a2 − r2)

]
δz(vz − vo) , (1)

where v2
⊥ = v2

r + v2
ϕ, vr, vϕ and vz are particles’ radial,

azimuthal and axial speeds, respectively, vo is the averaged
axial speed of particles, and δ(x) is the delta function.

STABILITY ANALYSIS

The stability study here is carried out within the context
of the Vlasov-Maxwell equations and the electrostatic ap-
proximation for small perturbations evolving in the linear
regime. Thus, we consider small perturbations in the dis-
tribution function f1(x,v, t) and in the electric potential
φ1(x, t) described by the linearized Vlasov-Poisson equa-
tions

∂f1

∂t
+ v · ∂f1

∂x
+

dv
dt

· ∂f1

∂v
=

q

M
∇φ1 ·

∂f0

∂v
, (2)

and

∇2φ1 = −4πq

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f1(x,v, t)d3v . (3)

Assuming the perturbed quantities vary in space and
time according to

{
f1, φ1

}
=

{
f̃ , φ̃

}
ei(ωt+mϕ−kz), the lin-

earized Vlasov-Poisson equation can be treated by integrat-
ing over the unperturbed particle orbit to yield the follow-
ing differential-integral equation in the region of r ≤ a ,
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1
r

∂

∂r

(
r
∂φ̃

∂r

)
−

(m2

r2
+ k2

)
φ̃

=
ω2

p

aν2
φ̃(a)δ(r − a) +

2ω2
p

π

[
iΩ

∫ ∞

−∞

∫ ∞

−∞
dvrdvϕ

dδ⊥
dv2

⊥

×
∫ ∞

0

φ̃(r′)
( 1

r′

)m(
ξ1eiθ + ξ2

)me−iΩτdτ

+
k2

2

∫ ∞

−∞

∫ ∞

−∞
dvrdvϕδ⊥

∫ ∞

0

τ φ̃(r′)
( 1

r′

)m

×
(
ξ1eiθ + ξ2

)me−iΩτdτ

]
, (4)

where δ⊥ = δ
[
v2
⊥ − ν2(a2 − r2)

]
, ξ1 = (v⊥/ν) sin(ντ),

ξ2 = r cos(ντ), Ω = ω − kvo is the Doppler-shifted
frequency, r′ = (ξ2

1 + ξ2
2 + 2vrξ1ξ2/v⊥)1/2, and m = 0,

1, 2, . . . denotes the azimuthal harmonic number. The right
hand side of Eq. (4) is zero in the region of a < r ≤ b.

Expanding the perturbed electric potential in Eq. (4) as a
sum of Jacobi polynomials P

(m,0)
l (x) according to

φ̃(r) =
( r

a

)m ∞∑

l=0

GlP
(m,0)
l

(
1 − 2r2

a2

)
, (5)

we can derive a recursion relation

WlAl+1 +
(
Wl + Wl−1 + Ul

)
Al + Wl−1Al−1 = 0 , (6)

for l = 1, 2, 3, · · ·, where Gj is independent of r, Al =∑∞
j=l(−1)j+lGj ,

Ul = 2(m + 2l) + (ωp/ν)2
(
Bl−1 − Bl

)
, (7)

Wl =
a2k2

2(m + 2l + 1)

[
1 +

(ωp

ν

)2 ∂Bl

∂α

]
, (8)

Bl = i

∫ ∞

0

e−iαx cosm xP
(0,m)
l (cos 2x)dx , (9)

and α = Ω/ν. Applying the proper boundary conditions at
r = a together with Eq. (6) leads to the dispersion relation

a

φ̃o

dφ̃o

dr

∣
∣
∣
∣
r=a

= m+
(ωp

ν

)2(
1−B0

)
+W0+

W0A1

A0
, (10)

where the ratio A1/A0 can be expressed in terms of infinite
determinants or a continuous fractions, and

φ̃o(r) ∼ Im(kr)Km(kb) − Im(kb)Km(kr)
−iZ

[
Im(kr)K ′

m(kb) − Km(kr)I ′m(kb)
]

, (11)

is the potential external to the beam derive from solving
Eq. (4) in the region of a < r ≤ b. Here, In(x) and
Kn(x) are the nth order modified Bessel functions of the
first and the second kinds, respectively, the prime indicates
the derivative with respect to the argument, Z = ωZ/(ck),
Z is the wall impedance, and c is the speed of light.

For k = 0, the recursion relation (6) reduces to the dis-
persion relation Uj = 0 for the transverse modes discussed
earlier in Ref. 12. When m=0, the Jacobi polynomials in

Eq. (5) become Legendre polynomials and Eq. (10) reduces
to the dispersion relation for axisymmetric modes studied
in Ref. 1. Taking the limit of ν → 0 in Eq. (10), one finds
the cold-beam dispersion relation[13]. The customary dis-
persion relation of the “usual dipole mode”[14] in a contin-
uous nonrelativistic beam without axial momentum spread
can be obtained from Eq. (10) by considering the limit of
kb � 1 for m = 1.

The roots of the dispersion relation (10) fall into three
classes: (i) the ones that approach the pure transverse
modes, i.e., the solutions of Uj = 0, when k → 0, (ii)
the “high-frequency coupling modes” having the limit of
Ω → nν when ωp → 0, and (iii) the “low-frequency cou-
pling modes” with Ω → 0 when ωp → 0. Both types of
“coupling modes” are full three-dimensional perturbations
and therefor vanish when k = 0 or m = 0 or when the lon-
gitudinal and the transverse perturbations are treated sep-
arately. The high-frequency coupling modes do not exist
in the axisymmetric perturbations, and the low-frequency
coupling modes exist only in the perturbations of even and
zero m. The “usual transverse modes” found in the cus-
tomary analyses[14] are similar to the lowest radial modes
in class (i). When there is no strong necessity to distin-
guish the roots among the solutions of Uj = 0, we shall
use the notation Tm,j to represent the whole family of so-
lutions associated with Uj = 0 for the mth azimuthal har-
monic. The usual transverse modes will be referred to as
the Tm,0 modes, the high-frequency coupling modes will
be designated as Cm,j modes, and the low-frequency cou-
pling modes will be referred to as Lm,n modes for n ≥ 1,
in the order of their first appearance in solving the disper-
sion relation using the (2n − 1) × (2n − 1) determinants.

NUMERICAL EXAMPLE

Here, we present a numerical example of the solutions to
the dispersion relation (10) for some low radial modes as-
sociated with the dipole (m = 1) perturbation. Readers are
referred to Ref. 1 for the numerical results of the axisym-
metric modes. We consider only the case of b/a = 1.5 and
ka = 1. The infinite determinants in the dispersion relation
have to be truncated to finite ranks for a practical numerical
computation. We limit our study to the first sixteen trans-
verse modes, up to the T1,3 modes, out of the sequence of
an infinite number of the roots of Eq. (10). The real part of
Ω/νo is shown in Fig. 1 as a function of tune depression
ν/νo. Figure 2 shows the real part of Ω2/ν2

o as a function
of ν/νo in the high-intensity region. As shown in Fig. 1,
that for all modes, the values of Ω/νo start from the solu-
tions of Uj = 0 (j = 1, 2, and 3), i.e. from 1, 3, 5, and 7,
at ν = νo, and decrease when the beam intensity increases.
When ν → 0, the T1,0 mode approaches the cold-beam
limit, while the Ω/νo of the upper T1,2 and T1,1 modes ap-
proach 2, and the Ω of all other modes approach zero.

A kind of obvious mode interaction appears in the high-
intensity region as confluences of modes where two or
more modes have the same real part of frequencies. Among
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the first sixteen roots, three confluences are found: the con-
fluence of T1,0 and T1,2 near ν = 0.38νo, the confluence
of C1,1 and T1,2 between ν = 0 and ν = 0.26νo, and the
confluence of two upper T1,3s between ν = 0.118νo and
ν = 0.52νo. The frequencies in the confluence regions
are complex conjugate pairs indicating possible instabil-
ity. In addition, the lowest T1,1 mode, the two lower C1,2

modes, and the two upper T1,3 modes are unstable in the
high-intensity region. The two upper T1,3s have the highest
growth rate, about 0.72νo at ν = 0.118νo in the confluence
and reaching 1.4νo around ν ≈ 0. The lowest T1,1 has
the next highest growth rate of 0.088νo near ν = 0.23νo.
The confluence of T1,0 and T1,2 has a maximum growth
rate of 0.001νo. We investigated the effect of resistive wall
impedance and found that only the usual dipole mode, the
T1,0 mode, is appreciably influenced by the resistive wall
impedance. The highest growth rate occurs near ν ≈ 0. In
the case considered here, the maximal |Im(Ω/νo)| of the
T1,0 mode has the values of 0.0, 0.034, 0.066, and 0.092,
for Z = 0.0, 0.1, 0.2, and 0.3, respectively.
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Figure 1: The real part of Ω/νo for the first sixteen m = 1
modes versus ν/νo for ka = 1.0, b/a = 1.5, and Z = 0.
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Figure 2: The real part of Ω2/ν2
o for the first sixteen m = 1

modes as a function of ν/νo in the high-intensity region for
ka = 1.0, b/a = 1.5, and Z = 0.

CONCLUSIONS

We have studied the three-dimensional stability of a con-
tinuous beam with a KV distribution within the context
of linearized Vlasov-Maxwell equations and electrostatic
approximation. A dispersion relation has been derived to
facilitate the investigation of any azimuthal mode. Two
classes of coupling modes were discovered. The occur-
rence of mode confluences in the high-intensity region in-
dicates possible instability. We have examined some lower
radial modes of dipole perturbation and identified some un-
stable modes. In particular, we have found a confluence of
the usual dipole mode and a previously studied transverse
mode may cause weak instability. The highest growth rate
of the dipole modes are higher than that of the axisym-
metric modes previously studied. Since not all instability
in a KV beam are realized, computer simulations are sug-
gested for further investigation. The effect of resistive wall
impedance was also studied for dipole modes. It was found
that only the usual dipole mode is appreciably affected by
the resistive wall impedance.
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