NEW VORTICES IN AXISYMMETRIC INHOMOGENEOUS BEAMS

Yu.Ya. Golub,
Moscow Radiotechnical Institute, 132 Warshavskoye shosse, 113519 Moscow, Russia, E-mail: yurigolub@mtu-net.ru

Abstract

We analyzed localized vortices in non-neutral inhomogeneous by density and velocity electron beams propagating in vacuum along the external magnetic field. These vortices distinguish from well-known vortices of Larichev-Reznik or Reznik types, which used in [1]. New types of vortex are obtained by new solution method of nonlinear equations. The new method is development of a method described in [2]. That method distinguish from standard Larichev-Reznik or Reznik method, which used in [1]. It has been found new expression for electric field potential of vortex in a wave frame. The expression is axisymmetric in a wave frame. New vortices are new solitons. New vortices are the result of external disturbances or the appearance and development of instabilities like for example a diocotron instability in hollow beams and a slipping-instability in solid beams.

1 BASIC EQUATIONS

We investigate the nonrelativistic electron beam, which propagating in vacuum along the external homogeneous magnetic field B_{0} in z-direction of cylindrical coordinate system ($\mathrm{r}, \theta, \mathrm{z}$). An equilibrium and homogeneous by θ and z state of the system is characterized by radial distributions of electron density $\mathrm{n}_{0}(\mathrm{r})$ and velocity $\boldsymbol{v}_{0}\left[0, \mathrm{v}_{0 \theta}(\mathrm{r}), \mathrm{v}_{02}(\mathrm{r})\right]$ and the electron field potential $\varphi_{0}(\mathrm{r})$. We assume $\omega_{\mathrm{c}}^{2} \gg \omega_{\mathrm{p}}^{2}$, where ω_{p} - the plasma electron frequency, ω_{c} - the electron cyclotron frequency.

We investigate the nonsteady state of the system characterized by the deviations $\mathrm{n}, \boldsymbol{v}, \varphi$ from equilibrium values of $\mathrm{n}_{0}, \boldsymbol{v}_{0}, \varphi_{0}$. The solution of the motion and continuity equations for the particles and Poisson equation for the electric fields potential we choose in the form of a travelling wave in which all the parameters are functions of the variables r and $\eta=\theta+\mathrm{k}_{\mathrm{z}} \mathrm{z}$ - ωt with the constant wave number k_{z} and frequency ω. If we neglect by inertial drift of the electrons due to large value of ω_{c}, we obtain equation as in [3]:

$$
\begin{equation*}
\left\{\Delta_{\perp} \varphi-\Lambda \varphi+\mathrm{S} \varphi^{2}, \varphi-\frac{\omega_{\mathrm{d}} \mathrm{~B}_{0}}{2 \mathrm{c}} \mathrm{r}^{2}\right\}_{\mathrm{r}, \eta}=0 \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \{f, g\}_{r, \eta}=\frac{1}{r}\left(\frac{\partial f}{\partial r} \frac{\partial g}{\partial \eta}-\frac{\partial f}{\partial \eta} \frac{\partial g}{\partial r}\right) \\
& \Lambda=-\frac{k_{z}\left(k_{z}+k_{v}\right) \omega_{p}^{2}}{\omega_{d}^{2}}-\frac{k_{n} \omega_{p}^{2}}{v_{0} \omega_{d}} \\
& S=\frac{k_{z}}{2}\left(\frac{\left(k_{z}+k_{v}\right) e}{m \omega_{d}^{2}}\right)^{2} \\
& k_{v}=\frac{1}{\omega_{c} r} \frac{d v_{0 z}}{d r} \\
& k_{n}=\frac{v_{0}}{\omega_{c} r} \frac{d n_{0}}{d r} \quad v_{0}=v_{0 z}(0) \\
& \omega_{d}=\omega-k_{z} v_{0 z}-\frac{v_{0 \theta}}{r}
\end{aligned}
$$

m and -e - the electron mass and charge, c - is the speed of light. Δ_{\perp} is the transverse part of the Laplace operator.

2 LOCALIZED VORTICES

In [4-5] Larichev V.D. and Reznik G.M. solved the equation (1) only then, when neglected term $S \varphi^{2}$. Thus they obtain solution knows as Larichev-Reznik. But we don't neglect that nonlinear term. We obtain nonlinear equation

$$
\begin{equation*}
\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi}{\partial r}-\Lambda \varphi+S \varphi^{2}=0 . \tag{2}
\end{equation*}
$$

The nonlinear equation (2) is distinguish from KdV and Bessel. We obtain the approximate solution the equation (2) by original method. The method is the functional iteration method. The next $(\mathrm{n}+1)$ iteration obtain from equation:
$\varphi^{(n+1)}=\varphi^{(n)}+\operatorname{sign}\left(\tau^{(n)}(0)\right) * \frac{1}{\Lambda}\left(\tau^{(\tau)}(r)\right)$
where $\tau^{(n)}$ - the residual of $\varphi^{(n)}$ in (2):
$\tau^{(n)}=\left(\frac{\partial^{2} \varphi^{(n)}}{\partial r^{2}}-\Lambda \varphi^{(n)}+\frac{1}{r} \frac{\partial \varphi^{(n)}}{\partial r}+S\left(\varphi^{(n)}\right)^{2}\right)$, $\varphi^{(0)}$ is the solution for KdV equation:

$$
\varphi^{(0)}=\frac{3}{2} \frac{\Lambda}{S} \frac{1}{\left(\operatorname{ch}\left(\frac{\sqrt{\Lambda}}{2} r\right)\right)^{2}}
$$

The equation for first iteration:
$\varphi^{(1)}=\varphi^{(0)}-\frac{1}{\Lambda}\left(\frac{\partial^{2} \varphi^{(0)}}{\partial r^{2}}-\Lambda \varphi^{(0)}+\frac{1}{r} \frac{\partial \varphi^{(0)}}{\partial r}+S\left(\varphi^{(0)}\right)^{2}\right)$
First iteration $\varphi^{(1)}$
$\varphi^{(1)}=\frac{3 \sqrt{\Lambda}\left(\sec h\left(\frac{\sqrt{\Lambda} r}{2}\right)\right)^{2}\left(\sqrt{\Lambda} r+\tanh \left(\frac{\sqrt{\Lambda} r}{2}\right)\right)}{2 S r}$
That iteration $\varphi^{(1)}$ is the approximate solution the equation (2). We can obtain $\varphi^{(2)}$, then $\varphi^{(3)}$, et al. The iterations $\varphi^{(2)}$ and $\varphi^{(3)}$ is the approximate solution the equation (2). The second iteration equation $\varphi^{(2)}$

$$
\varphi^{(2)}=\frac{1}{\Lambda}\left(\frac{\partial^{2} \varphi^{(1)}}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi^{(1)}}{\partial r}+S\left(\varphi^{(1)}\right)^{2}\right)
$$

The dependence of $\varphi^{(0)}-\operatorname{dot}$ line, $\varphi^{(1)}$ - solid line, $\varphi^{(2)}$ - dash dot line, $\varphi^{(3)}$ - dash line - on the radius r is shown in Fig. 1 for $\Lambda=1 \mathrm{~cm}^{-2}$ and $S=1 \mathrm{~cm}^{5 / 2} \mathrm{~g}^{-1 / 2} \sec$. We see that the maximum amplitude $\varphi^{(n)}$ approach to constant with increase n .

We see that the $\varphi^{(1)}$ and $\varphi^{(2)}$ are closely to $\varphi^{(3)}$. Thus the functional iteration method for the approximate solution have convergence.

Thus we obtain the approximate solution, which exponentially decreases with radius r . That approximate solution is continuous function in first differential in contrast to Larichev-Reznik solution. That approximate solution is near KdV solution at large r . It has been found new expression for electric field potential of vortex in a wave frame. The expression is axisymmetric in a wave frame. New vortices are the result of external disturbances or the appearance and development of instabilities like for example a diocotron instability in hollow beams and a slipping-instability in solid beams.

Fig.1: The dependence of $\varphi^{(0)}-\operatorname{dot}$ line, $\varphi^{(1)}$ - solid line, $\varphi^{(2)}$ - dash dot line, $\varphi^{(3)}$ - dash line - on the radius r.

REFERENCES

[1]. Golub Yu.Ya., Nikulin M.G., Rozanov N.E. In: Nonlinear world: IV Intern. Workshop on Nonlin. and Turbul. Proc. in Phys., (ed. by V.G. Bar'yakhtar et all) World Scientific Publishing Co. Pte. Ltd., Singapore, 1990, vol. 2, p. 857
[2] Golub Yu.Ya., Proceedings of EPAC 2002, Paris, France, 1253
[3]. Aburdzhaniya G.D., Kamenetz F.F., Lakhin V.P., Mikhailovskii A.B. and Onishchenko O.G. Phys. Lett. 105A (1984) 48
[4] Larichev V.D. and Reznik G.M. Dokl.Akad. Nauk SSSR 231 (1976) 1077
[5] Reznik G.M. Dokl.Akad. Nauk SSSR 282 (1985) 981

