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Abstract

Vlasov simulations of instabilities driven by resistive
impedance are used to determine growth rates of single-
bunch instabilities. A method for measuring synchrotron
tunes and growth rates from simulated synchrotron side-
bands is described. Simulated growth rates are com-
pared with Oide’s calculation [K. Oide, Part. Accel.51, 43
(1995)].

INTRODUCTION

Vlasov-based and particle-tracking [1], and Perron-
Frobenius [2] methods exist for the numerical calculation
of single-bunch instabilities. These methods are capable of
simulating the growth of modes arising from a few coupled
synchrotron modes as well as instabilities in the microwave
regime. Oide used a Vlasov- mode-based computer code to
calculate growth rates for the first four synchrotron modes
in the presence of a resistive impedance and in the absence
of radiation damping [3]. He found that these rates are ap-
proximately proportional to the square of the beam current
over a wide range of currents. This paper describes the
time-domain simulation of growth of these instabilities and
compares the simulated growth rates with Oide’s calcula-
tions. These simulations are performed by integrating the
Vlasov equation using the method of Warnock and Ellison
[2] in a code written in Mathematica [4]. Nonlinear terms
coming from potential-well distortion are simulated. Sim-
ulated quadrupole-mode growth rates agree very well with
Oide’s results while the dipole-mode growth rates are lower
that Oide’s results.

CALCULATION OF SIMULATED TUNES
AND DAMPING RATES

A simulated bunch above threshold for instability that
initially has the Ha¨ıssinski distribution will not, in princi-
pal, change with time. In computational practice, however,
perturbations of the bunch distribution exist and these per-
turbations serve to seed the growth of unstable modes. In
the model under consideration, the unstable modes Oide
described [3] grow exponentially in time, each mode with
its own growth rate. Each mode contributes a finite-width
line to a synchrotron sideband reflecting the synchrotron
tune of the mode and its growth rate.
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In this study, the tunes and damping rates of dipole and
quadrupole modes are calculated from simulations in the
linear regime by first Fourier transforming the simulated
line densityλ(φ, t) with respect to the phase coordinateφ
at some revolution linen to obtain an approximation of a
transformed pickup signalλn(t).

λn(t) =
1
2π

∫
dφ λ(φ; t) e−inφ (1)

The expression is approximate to the degree that the line
density does not to change significantly during the time
the bunch traverses the pickup. This function is Fourier
transformed with respect tot to obtain the spectral signal
λn(ω), with ω the offset from thenth revolution line. It is
assumed that that offset is small compared toω0. One then
fits this function to resonances of multipole modes in the
synchrotron sidebands. The resonances are each functions

f̃j(ω) =
[
1 − i

ωj

2Γj

(
ω

ωj
− ωj

ω

)]−1

, (2)

whereωj andΓj are the resonant frequency and damping
rate of thejth mode. These functions are the fourier trans-
forms of the wake functions

fj(t) = 2Γje
−Γjt

(
cosωjt − Γj

ωj
sin ωjt

)
, (3)

whereωj =
√

ω2
j − Γ2

j . One then constructs a modelS(ω)
of the spectrum of the bunch as the superposition ofN of
these resonances and corrects for the finite duration of the
simulations.

S(ω) =
N∑

j=1

aj f̃j(ω)
[
1 − eiωtmax

(
fj(tmax)

2Γj

+ i
ω2

j

ωωj
e−Γjtmax sin ωjtmax

)]
(4)

In this expression,tmax is the duration of the simulation
and the coefficientsaj are complex-valued weights. This
differs significantly from a simple superposition of reso-
nances (Eq. (2)) for a given mode if fewe-folds growth
of the mode are simulated, which is the case for the slow-
growing dipole modes. The4N real parameters embedded
in Eq. (4) are all varied to fit the model to the simulated
sidebandsλn(ω) in a frequency range encompassing the
synchrotron lines, i.e., the function∫ max

min
dω |λn(ω) − S(ω)|2 (5)
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Figure 1: Example spectrum of a simulated bunch at 118
mA and corresponding fit as a function of frequency off-
set from a revolution line. The synchrotron frequency is
11 kHz and the revolution harmonicn is 55. The green
points are of the simulated spectrumλ(ω), the blue trace
is the fit functionS(ω) covering the dipole and quadrupole
lines, and red is the residual error. The sextupole line is
also visible in the simulated spectrum.

is minimized. Figure 1 shows an example of a spectrum
and its corresponding fit forN = 2.

SEEDING INSTABILITIES

A perturbation δΨ of the Ha¨ıssinski distribution
ΨHa(φ, p) [5], whereφ andp are phase-space variables,
serves to seed instability in the bunch. Using a seed en-
sures that mode signals are above the noise background in
the synchrotron sidebands at the start of the simulation, a
background that originates from an imperfectly calculated
Haı̈ssinski distribution. It was found that the quadrupole
mode grows large more quickly than the dipole mode and
nearly any seed results in strong quadrupole oscillations
in the time there is significant growth of the dipole mode.
So a perturbation that seeds the dipole mode preferentially
was used. This allowed sufficient time that the growth rate
of the dipole mode could be estimated before quadrupole-
mode oscillations swamp the dipole mode.

The seed used has the form

δΨ(φ, p; t = 0) = ςp ΨHa(φ, p), (6)

whereς is the real constant chosen so thatςpmax � 1,
wherepmax is the value ofp at the edge of the grid (this
ensures thatδΨ is a small perturbation).

Oide and Warnock and Ellison discuss the ’trivial’ dipole
solution, which is the solution of the Vlasov equation
where the Ha¨ıssinski solution translates in phase space in
an orbit determined by the rf Hamiltonian. This transla-
tional solution exists only for hamiltonians harmonic in
both the configuration and momentum variables. It exists
because of the degeneracy of the frequencies (divided by
the multipole orders) of the synchrotron modes and that
the wake induced by the bunch has short range and tracks
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Figure 2: Simulated growth rates (dots) plotted on top of
Oide’s Fig. 2. Red represents dipole-mode growth rates
while pale green represents quadrupole-mode growth rates.
Sextupole and octupole modes are represented by aqua and
violet traces without simulated data points.

the bunch [3, 2]. This translation is not a dipole mode in
the sense of the dipole term of a multipole expansion of
the distribution. So this solution is an inappropriate initial
condition for seeding dipole oscillations: it results in un-
damped oscillations.

RESULTS

Oide expresses complex-valued synchrotron frequencies
Ω normalized with respect toωs,

µ = Ω/ωs, (7)

when referring to a coherent frequency of any synchrotron
harmonic. The synchrotron tune is the real part ofω sµ and
the damping rateΓ is

Γ = ωsIm µ. (8)

The beam intensity is represented by the dimensionless pa-
rameter product

kR ≡ eIavR/ασ2
ε E0, (9)

whereIav is the average single-bunch beam current,α is
the momentum compaction,σε is thefractional natural en-
ergy spread of the ring,E0 is the beam energy, and the ring
impedance is the resistanceR. While the productkR of
Eq. (9) is the same as Oide’s, there is a different conven-
tion for the dimension ofR (a resistance) in Eq. (9) that
changes the exact form of Eq. (9).

Simulations were performed at 12 beam currents with
kR ranging from 1.27 to 7.95. Growth rates of the sim-
ulations are plotted together with Oide’s results in Fig. 2.
Figure 3 shows the corresponding synchrotron tunes.

There is good agreement between the quadrupole-mode
growth rates predicted by Oide and my simulations. In
these simulations, there are manye-folds growth of the
mode and analysis of their synchrotron lines is very clean.
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Figure 3: Simulated synchrotron tunes for the dipole (red)
and quadrupole (green) modes.

A separate time-domain analysis of these growth rates
gives the same results as the frequency-domain analysis de-
scribed above.

Simulated dipole-mode growth rates are much lower
than predicted by Oide, however. Calculations of this pa-
rameter using the method above were confirmed by inspec-
tion of time-domain plots of the intensity of dipole oscilla-
tions from a separate calculation based on the same simu-
lations, which serves as a check of the method. Also by
inspection of these plots, extraction of the three dipole-
mode growth rates at the highest-current data points of
Fig. 2 is compromised by the fast growth and intensity of
the quadrupole-mode oscillations. The low growth rates
of the dipole modes at these currents were not determined
precisely due to the rapid growth of the quadrupole mode.

Errors in the simulation of growth rates result from, in
part, the finite time step and the finite spacing of the grid
in phase space. In most of these simulations, the time step
is δt = 2π/90ωs and the phase-space grid is81 × 81. I
then varied these parameters to check convergence. Fig-
ure 4 shows the dipole- and quadrupole-mode growth rates
for a kR = 5.87 beam for varying number of grid points.
The time step is 1.0µs. Figure 5 shows the effect of vary-
ing the time step from 0.5 to 2.0µs for 81 × 81 grids.
Both plots show that the quadrupole-mode growth-rate pre-
dictions show little variation with these parameters except
with the coarsest grids. So these calculations are robust.
But the plot varying the time step shows that the dipole-
mode growth-rate predictions have not seen enough expo-
nential growth to accurately estimate the growth rate. At
best, the calculations provide an upper limit that is a frac-
tion of the quadrupole-mode rate.

There is still uncertainty regarding the appropriate seed
for the dipole mode. If the ‘trivial’ dipole mode, as well as
the ‘true’ dipole mode, is seeded, the growth rate appears
artificially low until the ‘true’ dipole mode overpowers the
‘trivial’ one. Furthermore, one must see substantial expo-
nential growth of the dipole mode before the quadrupole
mode overpowers the dipole mode. A better estimate of
the dipole coherent mode is necessary to better suppress
the quadrupole mode and enhance the dipole mode. So the
source of the discrepancy in the dipole-mode growth rates
(compared with Oide’s calculation) is not determined.
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Figure 4: Variation of simulated dipole- and quadrupole-
mode (red and green, respectively) growth rates with num-
ber of grid points.kR = 5.87 and the time step is 1.0µs.
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Figure 5: Variation of simulated dipole- and quadrupole-
mode (red and green, respectively) growth rates with inte-
gration time step.kR = 5.87 and the number of grid points
is 81 × 81.

CONCLUSION

Vlasov simulations of bunch instability driven by a resis-
tive impedance were used to determine growth rates of the
dipole and quadrupole modes. The method for determining
these growth rates from simulated synchrotron sidebands
was described. These simulations resulted in very good
agreement with Oide’s calculations [3] for the quadrupole
mode but lower growth rates for the dipole mode.
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