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Abstract

Beginning with the Fokker-Planck equation we present
a new analysis of intrabeam scattering (IBS) in electron
storage rings. Our approach is distinguished by having
no ill-defined Coulomb logarithm, a fundamental draw-
back of previous approaches. We treat the case of linear
xβyβ coupling in detail, deriving explicit expressions for
the second moment invariants and their time evolution in
the presence of IBS. We compare our results with those
of Bjorken-Mtingwa, as well as with measurements per-
formed at KEK’s ATF damping ring. More details of our
derivations will be published elsewhere.

EVOLUTION EQUATIONS
We consider a smooth focusing approximation Hamil-

tonian representing the symplectic part of the dynamics
in the storage ring given by H = (1/2)Sijzizj with �z =
(x, x′, y, y′, z, δ). If we consider damping and diffusion
processes (both radiation and IBS) as well as the Hamil-
tonian evolution, the beam distribution function f(�z, t)
evolves via the Fokker-Planck equation:
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with Bi = Cijzj + (〈δzi〉W /δt)IBS, Dij = dij +
(〈δziδzj〉W /δt)IBS. The various matrices are given by
C = JS − b, b is the damping matrix, d is the diffu-
sion matrix, and J is the symplectic inner product matrix
J =diag({0 1}, {−1 0}). The IBS average 〈 〉W is over the
probability that a given particle with phase space position
�z will change by δ�z in a time δt. In a coordinate system
where x, y, z are real positions, only W (δpa) (a=1 . . . n)
will be non-zero. For 2n-D phase space, there exist n
invariants of H: ga = �zT Ga�z with Ga = JUG̃aUT J ,
where U is the symplectic matrix whose columns con-
sist of pairs of eigenvectors of JS, (va,−iv∗

a) normalized
such that vT

a Jvb = −iδab, and G̃a is given by having
−iσx = ({0 − i}, {−i 0}) in the ath spot along the diag-
onal and the rest 0’s. The RMS emittance is εa = 〈ga〉/2.

If the damping and diffusion are slow compared to the
Hamiltonian evolution, the distribution will approximately
be a Gaussian function of the invariants:
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The distribution is normalized so that
∫

d�zf(�z) = N , and
the phase space volume is given by Γ = (π)3〈g1〉〈g2〉〈g3〉.
IBS is most naturally analyzed in the beam frame which
we notate by �Z = ( �X, �P ). With small x′, y′, and for large
relativistic γ factor, the Lorentz transformation is simply
X = x, Y = y, Z = γz, Px = P0x

′, Py = P0y
′, Pz =
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P0δ/γ, dt = γdt̄ with P0 the reference momentum. We
introduce �z = L�Z. For the distribution matrices, we write
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where M̄ = LT
ML is M expressed in the beam frame and

M̄
(a) = 2LT G(a)L/〈ga〉.
From (1), the evolution of the moments Σij = 〈zizj〉f is

dΣij
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=
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Note that Σ−1 = M. We can also show that the evolution
of the average values of the invariants is

d〈ga〉
dt

= −2αa(〈ga〉 − 〈ga〉0) +
(

d〈ga〉
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)IBS

(5)

where the equilibrium values of the invariants without IBS
are 〈ga〉0 = da/(2αa), or εa0 = da/(4αa) with 2αa =
Tr(b̃a) and da = Tr (Gad) where b̃a is the ath 2×2 block
along the diagonal of b̃ = U−1bU . To first order, the αa

are the real parts of the eigenvalues of the matrix C.
We define the IBS growth rate as T−1

a =
(d〈ga〉/dt)IBS/〈ga〉. For Eq. (4) there are 2 types of
terms in (dΣ/dt)IBS, one in the form of 〈xapb〉 and the
other 〈papb〉. Using Eq. (3), we get
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where AKab = d〈PaPb〉/dt|IBS, AQab = d〈XaPb〉/dt|IBS

and A contains overall constants. We’ve moved into the
beam frame using Tr (MaΣ)=Tr(M̄aΣ̄) with Σ=LΣ̄LT .

IBS DAMPING AND DIFFUSION
IBS has been studied extensively [1-4,7], with Bjorken-

Mtingwa (BM)[2] and Piwinski (P)[3] the main founda-
tions of later derivations. We start from first principles,
aiming for a clearer understanding of the subject. In addi-
tion to having no Coulomb log, our approach differs from
[4] and [7] in that we follow invariants directly and give ex-
plicit expressions for them in the case of global coupling.

We compute B̄IBS
a (�Z) = 〈δPa〉W /δt̄ and D̄IBS

ab (�Z) =
〈δPaδPb〉W /δt̄. Let the two particles have coordinates �Z1

and �Z2 and let �r= �X1− �X2 and �∆=�P1− �P2. If we consider
them undergoing a scattering process, the impact param-
eter is �b = �r−r(∆̂ · r̂)∆̂, where hats designate unit vec-
tors. In the small angle approximation, the scatter leads to
a total momentum kick δ �P1≈−4k2/(∆3b2)∆̂+2k/(∆b)b̂
where k=(mc)2r0 with r0 the classical particle radius. For
δPa, we discard the 2nd term which should rightfully be in-
cluded in the space charge analysis, and then keep the term
in δPaδPb required for energy conservation. We then av-
erage these quantities over the portion of particle 2’s phase
space where the time to the distance of minimum approach
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tmin =−m(r/∆)∆̂ · r̂ is less than δt̄. Letting δt̄ → 0 we
arrive at
〈δPa〉W

δt̄
=−4k2

m

∫
d�∆ d�r

∆̂a

∆2b3
f̄( �X2, �P2)δ(∆̂ · r̂) (7)

〈δPaδPb〉W
δt̄

=
4k2

m

∫
d�∆ d�r

b̂ib̂j

∆b3
f̄( �X2, �P2)δ(∆̂ · r̂) (8)

After use of the delta function in the integral, b can be re-
placed by r= |�r|. f̄ is f normalized so that

∫
d�Zf̄(�Z) = 1.

If we replace the spatial distribution with the local constant
density, and absorb the spatial divergence into a Coulomb
log, these reduce to the Rosenbluth Potentials[6].

REDUCE TO ANGULAR INTEGRALS
For the IBS contribution to the moment evolution equa-

tions, we can combine the damping and diffusion together
using (4) 1. For Gaussian distributions, the result is:

Kab =
∫

d6�ξ

∆r3

[
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]
e−
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Ignore Qab for now (no “Coulomb log” behaviour). If we
do the |�r| and |�∆| integrals and the integral from the δ func-
tion in Kab we are left with

THE CASE OF A COUPLED BEAM
With both x and y dispersion and xβyβ coupling param-

eter κ in the smooth approximation, we use the Hamilto-
nian H = (βc/2)(kxx2

β + x′2 + 2κxβyβ + kyy2
β + y′2 −

(kz/αc)z2
β −αcδ

2) where xβ = x − ηxδ, yβ = y − ηyδ,
zβ =z−ηxx′−ηyy′ and αc =kxη2

x+kyη2
y is the momentum

compaction factor. βc is the reference particle velocity. We

1This derivation of the BM results from the Rosenbluth potentials[6]
was carried out by M. Venturini [5].

2The quantity rm is the minimum impact parameter cut-off required
because (9) diverges for small distances. We take it to be a typical dis-
tance of minimum approach, rm = r0βx/(γ2εx). This cut-off is also
consistent with the small angle approximation used in the analysis.

use lab time as the independent variable. The smoothed
frequencies are kx=1/β2

x=(νx/R)2, ky =1/β2
y =(νy/R)2,

kz = (νs/R)2, with νx,y,s the horizontal, vertical betatron
and synchrotron tunes respectively. R=C/2π with C the
storage ring circumference. We parametrize kx, ky and κ
by kx = k0 +Λ cos ψ, ky = k0 −Λ cos ψ, κ = Λ sin ψ.
Λ =

√
(kx − ky)2/4+κ2 and tan ψ = 2κ/(kx−ky). ψ/2

is the tilt angle in the xβ ,yβ plane. The eigeninvariants are

g1,2 =
1

2
√

k0 ± Λ
([(k0 ± Λ)x2

β + x′2](1 ± cos ψ) +

[(k0 ± Λ)y2
β + y′2](1 ∓ cos ψ) ±

2[(k0±Λ)xβyβ+x′y′] sin ψ), (1 upper sign,2 lower sign)

g3 = (z2
β/βz) + βzδ

2 (13)

where βz = Rαc/νs. Note that H = βc
2 (

√
k0 + Λ g1 +√

k0 − Λ g2 −
√

kz g3). The IBS growth rates are
1

T1,2
=

A
4ε1,2

√
k0 ± Λ

[(1 ± cos ψ)K11 ± 2 sin ψK12

+ (1 ∓ cos ψ)K22 + γ2(k0 ± Λ)(η2
x(1 ± cos ψ)

+ η2
y(1 ∓ cos ψ))K33]

1
T3

=
Aγ2

σ2
δ

K33 (14)

The damping matrix has non-zero elements b22 = 2αx,
b44 = 2αy , b66 = 2αz and the rest of the elements are 0.
The diffusion matrix d has just one non-zero element (ig-
noring intrinsic x′, y′ diffusion), d66 = D/E2

0 , where D =
55r0�mc4γ7/(24

√
3ρ3). These yield coupled damping

constants α1,2 = 1
2αx(1± cos ψ) + 1

2αy(1∓ cos ψ), α3 =
αz and diffusion constants d1,2 = D

√
k0 ± Λ(ηx,y cos ψ

2 ±
ηy,x sin ψ

2 )2, d3 = βzD which yield equilibrium emit-
tances without IBS of

We have assumed that the lattice is isomagnetic and hence
the 1/ρ3 average in D causes the other parameters to be
averaged only in the bends with an overall ρ/R normaliza-
tion. In the zero coupling limit, we also replace 〈η2

x,y/βx,y〉
with 〈Hx,y〉. The observable transverse beam sizes are re-
lated to the invariants by

σ2
x,y =

ε1,2 cos2 ψ
2√

k0±Λ
+

ε2,1(1−cos ψ)√
k0∓Λ

+
ε3
√

kzη
2
x,y

αc
(16)

When ψ → 0, we recover σ2
x,y = βx,yεx,y + σ2

δη2
x,y .

APPLICATION TO THE ATF
As an application of our analysis, we compared with the

data taken at the ATF in April 2000. Ref. [1] attempted
this using a combination of the program SAD and IBS ex-
pressions based on BM with coupling added in a heuristic
way. There was an apparent discrepancy between theory
and experiment in the current dependence of the projected
vertical emittance, εy,pr = (σ2

yσ2
y′ −σ2

yy′)
1
2 . Our analysis

provides a solid base to explore this issue.

where M̆ is the unitless M matrix expressed in the basis of
�Z, i.e. we use2

Ă = r2mA, B̆ = (rmP0)B, C̆ = P 2
0 C. Also,

�ξ = (�r, �∆). For the overall constant, A = Nk2/(γmΓ̄)
with Γ̄=P 3

0 Γ. We also can compute:

Kab=
1
2

∫
dΩ

−hab
h3

[log(
h1

2
) + γE − q tan−1q] (11)

with hab = r̂ar̂b−∆̂a∆̂b, h1 = Ăabr̂ar̂b, h2 = B̆abr̂a∆̂b,
h3 = C̆ab∆̂a∆̂b, and q = h2/

√
4h1h3−h2

2; γE ≈ 0.577.
The q term in (11) will often be small and we drop it here.
Approximating the log()+γE term as a constant gives what
we call the Coulomb log approximation. This can be shown
to reduce exactly to the equivalent expression in BM. We
denote it by K

BM. The quotient of these two expressions
can be used to define the Coulomb log:

2Logab =

∫
dΩhab

h3
(− log(h1

2 ) − γE)∫
dΩhab

h3

=
Kab

K
BM
ab

(12)

This allows us to explore the range over which the usual
approach of having a single Coulomb log makes sense.

ε(1,2)0 =

〈
D
√

k0 ± Λ[ηx,y cos ψ
2 ± ηy,x sin ψ

2 ]2

2[αx + αy ± (αx − αy) cos ψ]

〉

b

ρ

R

ε30 =
〈
Dβz

4αz

〉
b

ρ

R
. (15)
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We vary κ and compare equilibrium values for εx, σs, σδ ,
and εy,pr. We also (as in [1]) vary βz with current computed
from the σs, σδ data, as a linear model for bunch lengthen-
ing. We use E0 = 1.28 GeV, ηx = 0.052 m, ηy = 3mm,
βx = 3.9 m, βy = 4.5 m, εx0 = 1.05×10−9 m, νs = .0049,
αc = .0029, C = 138.6m, ρ/R = 0.260. τa = 1/αa are
τx =18.2 ms, τy =29.2 ms, and τp =20.9 ms.

Figure 1 shows the evolution of the invariants starting
with injection values. We evolve the invariants using (5),
(11), and (14). The parameters correspond to the 3.1 mA
point on the middle curve of Figure 2. Note that εy pr/εx

is not constant, and hence there is not an exact global cou-
pling paameter κ′ such that εy, pr(t) = κ′εx(t).

εy,pr [pm]

εz [µm]

εy [pm]

εx [nm]

Figure 1: Time evolution of emittances.

Figure 2 shows a comparison of equilibrium projected
vertical emittance (solid curves) to the data (diamonds). εx

and σδ are not shown, but agreement is comparable to that
in [1]. By adjusting the coupling, we can get the correct
magnitude in εy,pr, but the slope still does not agree. For
ηy =3mm, we need κ/k0 between .02 and .03 which corre-
sponds to a tilt angle between 4 and 6 degrees. εy (dashed
curves) is smaller than εy,pr. This gives an indication of
the effect coupling has had on the measurements. In the

κ= 0.00175

 0.00118

 0.00150

κ= 0.00175
 0.00150

 0.00118

Figure 2: Comparison with ATF measurements. (κ in m−2)

ATF, the beam is coolest in δ and hottest in x. Thus, K33

is positive and K11 negative. K22 can be either positive
or negative (energy conservation gives

∑
a Kaa = 0.) We

find the biggest difference between Kab and K
BM
ab for K22.

In the small coupling limit, the K22 and the K33 contri-
butions to 1/T2 have a relative coefficient of γ2η2

y/β2
y . In

the “High Energy Approximation”, one keeps only the K33

term. However, for the ATF parameters, if ηy < 1.8 mm,
K22 can become important. In Figure 3 we plot the ratio
of the Coulomb logs defined in (12) to the conventional
Coulomb log Lc = log(σy/rm) (Lc ≈ 16 for ATF) for
varying vertical dispersion and zero coupling (since BM
dealt only with the uncoupled case). Effectively, we are
varying the beam aspect ratio, with the right side of the

plot approaching a round beam. Near ηy = 28mm, the
intrinsic vertical growth rates K22 and K

BM
22 have opposite

signs. Finally note that both Log11/Lc and Log33/Lc are
close to 1 over a wide range of beam aspect ratios.

Log33/Lc
Log22/Lc

Log11/Lc

Figure 3: Ratios of computed to nominal Coulomb log.

CONCLUSIONS AND FUTURE WORK
We have given new expressions for the IBS damping and

diffusion coefficients Ba and Dab and the moment evolu-
tion quantities AKab. We include the position distribution
in our approach (the matrix A for Gaussians), a necessary
step in understanding the effect that the shape of the beam
has on IBS. For Gaussian beams, we have reduced the ex-
pressions to 3-D angular integrals. In fact we can reduce
them to 2-D integrals with some increase in complexity.
We find that for flat beams with ATF parameters, Bjorken-
Mtingwa with bmax equal to the vertical beam size gives
excellent results for the horizontal and longitudinal growth
rates, but can break down for the intrinsic vertical growth
rate. We expect that for ηy < 1.8mm, for some values of
κ and νx−νy , there may be observable differences in the
growth rates and/or equilibria in the ATF.

We have also included global xβyβ coupling explicitly
for the first time and computed the evolution of the invari-
ants for the case of the ATF damping ring. We find that the
dependence of εy,pr on beam current cannot be explained
by our model which suggests that non-IBS physics and/or
measurement error may be occurring. The offset can be
explained, however, with a beam tilt angle of 4-6 degrees.

Future plans include exploration of full ηy, κ, νx − νy

parameter space in the ATF, application to protons or
heavy ions, synchrobetatron coupling, non-Gaussian equi-
libria and extension beyond the smooth approximation.
BN would like to acknowledge Marco Venturini and Ben
Freivogel for many useful discussions.
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