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Abstract

Elliptical SRF cavities operated in pulsed mode experi-
ence dynamic Lorentz detuning because of the time vary-
ing radiation pressure. Due to the narrow electromagnetic
bandwidth of these resonators, the induced detuning can
severely affect their matching conditions to the RF feeding
system. The active compensation scheme using piezoelec-
tric tuners has proven to be a viable and attractive method to
minimize the effects of the Lorentz detuning. To optimize
this compensation, mechanical parameters are extracted for
the action of the Lorentz forces and the piezoelectric tuner
from both measurement and simulation. This process gives
insights into the physics of the dynamic detuning, such
as the nature of the coupling differences of both detuning
sources, the possible settings for the measurement of the
dynamic detuning with the methods to deduce mechanical
parameters from them, and the origin of possible parasitic
effects in the measurements. These issues are reported and
discussed along with some ideas for the optimization of the
detuning compensation.

DETERMINATION OF THE CAVITY
MECHANICAL PROPERTIES

Qualitative modeling by a vibrating string
The modeling of the cavity wall vibrations by a vibrating

string is interesting because of its relative simplicity and
because it contains various aspects of the physics. Firstly,
the amplitude of the vibrations are small which is usually
assumed in the vibrating string problem. Secondly, a string
of finite length with fixed boundary conditions will produce
a modal basis equivalent to the mechanical resonances of
the cavity. Thirdly, some mode damping can be added to
reproduce the attenuation in time of the cavity mechani-
cal mode vibrations. Fourthly, distributed forcing, like the
Lorentz forces, or local forcing, like the piezoelectric tuner
action, are both possible. Fifthly, the detuning can be con-
nected to the vibrations by integration of the transverse dis-
placement over the longitudinal dimension of the string.
Details of the modeling and of the calculus are presented
in [3]. In the end, the model can be reduced to a system of
second order ordinary differential equations (ODE) which
support other analysis using such a modal approach [4]. In
the following, the modal mechanical parameters are written
{Ωm, Qm, km} where the index m refers to the mth me-
chanical mode. Using the vibrating string model, it can be
shown that the usually quoted parameter K for the Lorentz
detuning, linking the detuning to the square of the field in
the cavity as ∆f = −KE2, is the sum of all the modal km:
K =

∑

m
km. Also, it can be shown [3] that the coupling co-

efficients km are, as suggested in [4], the products of the
projections of the acting force on the mode shapes by the
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projections of the frequency sensitivity on the mode shapes.
As a direct consequence, it concludes that the coupling co-
efficients for the Lorentz force action are all of the same
sign because the acting force is proportional to the radiation
pressure Prad = 1

4{µ0|H |2 − ε0|E|2} whereas, according
to the Slater formulation, the frequency sensitivity is lo-
cally proportional to ε0|E|2 − µ0|H |2. This particularity
does not hold for other sources of dynamic detuning such
as piezoelectric tuners or microphonics because the acting
forces do not depend on the cavity fields. In those cases,
the coupling coefficients can therefore be of both signs.
This fact seems confirmed by measurements as shown in
the next section. The system of ODE for the Lorentz forces
action and piezoelctric tuner action can therefore be written
as

¨∆ωm +
Ωm

Qm

˙∆ωm + Ω2
m∆ωm = −Ω2

mkm,LV
2 (1)

¨∆ωm +
Ωm

Qm

˙∆ωm + Ω2
m∆ωm = Ω2

mkm,PVp (2)

where VP is the input voltage driving the piezoelectric
tuner. As mentioned, the coupling coeffients km,L associ-
ated to the Lorentz forces are only expected positive from
the model. From Eq. (1) and Eq. (2), it concludes that
in CW operation the relevant parameter is K whereas in
pulsed operation, the position of the modes with respect to
the harmonics of the repetition rate and the width of the
resonance peaks are the prime concerns. For this reason,
a harmonical analysis of the actions of the Lorentz forces
and of the piezoelectric tuner is of direct interest. This can
be performed by measuring the transfer functions for both
sources of dynamic detuning. In the next section, those
measurements and their study using simulations are pre-
sented.

Mechanical parameters for the action of the
piezoelectric tuner

The amplitude of the transfer function associated to the
piezoelectric tuner action was presented in [1]. For the
corresponding measurement settings, there is no initial de-
tuning (∆ω0 = 0), the current source is constant through
time (Ĩ(t) = Ĩ0), and the dynamic detuning is sinusoidal
(∆ω(t) = ∆ωosc sinωosct). The voltage in steady state is
periodic, using the parameterization θ = ωosct gives for

the normalized voltage ṽ(θ) = ṼSST (θ)

RLĨ0

ṽ(θ) = e−jσ cos θ
∑

n

P̃n(σ) cos θn cos(nθ − θn) (3)

where tan θn = n
ω1/2

ωosc
, P̃n are polynomials of σ = ∆ωosc

ωosc

with complex coefficients explicitly given  in  [3]. Using
Eq. (3) it is possible to efficiently reproduce the transfer
function of the voltage phase φV by finding the appropri-
ate mechanical parameters for the piezoelectric tuner ac-
tion. Particularly, using coupling coefficients of both signs
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Figure 1: Measured and simulated transfer function (amplitude (left) and phase (right)) for the action of the piezoelectric
tuner in the SNS medium beta cavity (Prototype cryomodule cavity #2). The input signal is the sinusoidal modulations of
the piezoelectric input voltage VP (t), the output signal is the voltage phase φV (t).

allows to reproduce correctly the phase of the transfer func-
tion as displayed in Fig. 1.

Mechanical parameters for the action of the ra-
diation pressure

A possible way to fill a cavity under dynamic detuning
is the phase-lock loop configuration [6]. A phase-lock loop
is a feedback loop designed to keep the phase between the
forward RF power and the cavity voltage at a given con-
stant value θl. As a consequence, the complexity of the
coupled system of the voltage differential equations and
the mechanical differential equations is greatly reduced be-
cause the voltage amplitude is independent of the dynamic
detuning. Using this property, it is possible to obtain the
transfer function associated to the action of the radiation
pressure by exciting the cavity CW with small amplitude
modulation on the forward power. The Lorentz transfer
function was measured by JLAB in the SNS medium beta
prototype cryomodule cavity #1 [5]. The modulated for-
ward RF power PRF = P0{1 + ε sinωmodt}, where ε is a
small parameter, generates a detuning in the m th mechani-
cal mode

∆ωm(t) ≈ −kmV
2
l {1 + ε cosφmod cosψm

Qm
Ωm

ωmod
sin(ωmodt+ φmod + ψm − π

2
)} (4)

where Vl =
√

8RLP0 cos θl, tanφmod = −ωmod

ω1/2
, and

tanψm = Qm( Ωm

ωmod
− ωmod

Ωm
). Using Eq. (4), it is possible

to find adequate mechanical parameters to reproduce the
Lorentz transfer function. Doing so, all the coupling coef-
ficients are assumed positive as mentioned previously. The
measured and the reconstructed transfer functions are pre-
sented in Fig. 2. The fact that all the coupling coefficients
are of the same sign translates to a rather large response
for the low frequency part of the amplitude of the Lorentz
transfer function because the contributions of all the me-
chanical modes add constructively. In comparison, the low
frequency part of the amplitude of the piezoelectric tuner
transfer function is not as large because of the interference
between modes with positive and negative coupling coef-
ficients. Since all the km,L are positive, the phase of the
Lorentz transfer function remains bounded in [0;π]. More
exactly, in [− π

2 ;π] because of an additional − π
2 shift orig-

inating from the parameter φmod which evolves progres-

sively from 0 to − π
2 as the frequency of the modulations

ωmod passes from small values to large values in compari-
son to the electromagnetic half-bandwidth ω1/2. This tran-
sition is the reason for the initial slope of the phase of the
transfer function observed in Fig. 2. It is interesting to
mention that the value of ω1/2 (and therefore of Qex) can
be determined from this slope.

COMPENSATION SCHEME BASED ON A
HARMONIC ANALYSIS OF THE

LORENTZ DETUNING
Depending on the profile of the Lorentz detuning in

nominal operation, a suited profile VP (t) has to be found
to generate a detuning ∆ωP (t) equal and opposite to the
Lorentz detuning ∆ωL(t) (at least during the beam pulse).
Based on understanding from modeling, a harmonic anal-
ysis of the problem shows that an ideal compensation can
be obtained even if the transfer functions for the piezoelec-
tric tuner and for the radiation pressure are not identical
in shape (i.e if the sets of coupling coefficients for both
detuning sources are not proportional to each other). In
the following, this harmonical approach is presented. For
SRF cavities operated in pulsed mode, the Lorentz detun-
ing in steady state contains only components of the repe-
tition rate ωrep and its harmonics. The Lorentz detuning

can be written ∆ωL(t) =
∞∑

n=0
∆ωL,n cos(nωrept + φL,n).

To obtain an ideal compensation, the detuning associated
to the piezoelectric tuner should be such that ∆ωP (t) =
∞∑

n=0
∆ωP,n cos(nωrept+φP,n), with ∆ωP,n = ∆ωL,n and

φP,n = φL,n + π for each harmonic n. In this prospective,
the piezoelectric tuner input voltage must be of the form

VP (t) =
∞∑

n=0

VP,n cos(nωrept + θP,n). Supposing an infi-

nite number of mechanical modes m = 1, 2, ...,∞, it can
be shown [3] that:

VP,n =
∆ωL,n√
a2

n + b2n
(5)

θP,n = φL,n + π − ϕn (6)

where an =
∞∑

m=1
cn,m sin 2ψn,m , bn = −

∞∑

m=1
cn,m{1 +

cos 2ψn,m}, cn,m = kP,mQmΩm

2nωrep
, tanϕn = bn

an
, and
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Figure 2: Amplitude and phase of the measured [5] and reconstucted transfer function associated to the Lorentz forces
in the SNS medium beta cavity (Prototype cryomodule cavity #1). The input signal is the sinusoidal modulations of the
forward RF power, the output signal is the dynamic detuning ∆ω(t).

tanψn,m = Qm( Ωm

nωrep
− nωrep

Ωm
). To illustrate this method,

the case of the SNS medium beta cavity is considered. An
example of a dynamic detuning profile for a cavity oper-
ated close to nominal condition was presented in [5] and
is used for the illustration of the method. The initial part
of the measured Lorentz detuning is caused by a parasitic
signal [3] and is therefore suppressed in the analysis. The
mechanical basis for the action of the piezoelectric tuner
was reconstructed up to 600 Hz, as shown in Fig. 1. Since
the repetition rate is 60 Hz, the Lorentz detuning function
is truncated to the first ten harmonics as displayed in Fig.
3. The input voltage VP (t) is calculated using Eq. (5) and
Eq. (6). The result is plotted in Fig. 4.
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Figure 3: Measured Lorentz detuning function ∆fL(t) [5]
and its truncation to the 10th harmonic of 60 Hz, ∆fL10(t).
This truncated function constitutes the function compen-
sated by the piezoelectric tuner input voltage VP (t) of Fig.
4.

CONCLUSION
The modeling effort was beneficial for a better under-

standing of the coupling of the Lorentz forces and of the
piezoelectric tuner action to the cavity. From this under-
standing, the mechanical basis for both detuning sources
could be reconstructed by the use of simulating tools. A
harmonic analysis was presented to show the underlying
basics of the compensation. The proposed scheme can be
further simplified [3] for practical application.
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