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Abstract

A fundamental theorem on particle acceleration is de-
rived from the reciprocity principle of electromagnetism
and a rigorous proof of the theorem is presented. The the-
orem establishes a relation between acceleration and radia-
tion, which is particularly useful for insightful understand-
ing of and practical calculation about the first order accel-
eration in which energy gain of the accelerated particle is
linearly proportional to the accelerating field.

INTRODUCTION

Near Field and Far Field.–Electromagnetic fields may
be separated into two classes, near fields and far fields. By
this separation, we define all radiation fields as far fields
for they are capable of carrying electromagnetic energy far
away from their sources, and all the rest, therefore, as near
fields. In all conventional accelerators near fields have been
used for particle acceleration. However, for laser driven
particle acceleration, which is characterized by the use
of electromagnetic fields with exceedingly smaller wave-
lengths, it is becoming imperative to make far fields our
primary choice.

Linear Acceleration and Nonlinear Acceleration.–
Energy coupling between a far field and a charged parti-
cle, and hence the mechanisms of laser acceleration, may
be separated into two classes, first order or linear acceler-
ations and nonlinear accelerations. By this separation, we
define all acceleration processes in which energy gain of
the accelerated particle is linearly proportional to the accel-
erating field as linear accelerations, and all the rest, there-
fore, as nonlinear accelerations. In all conventional accel-
erators linear accelerations have been used and proved ef-
fective and practical. For this reason, significant efforts of
research on laser acceleration in the past have been ded-
icated to the understanding and implementation of linear
accelerations with far fields. Through this collective ex-
perience a few rules of thumb on linear acceleration have
been accumulated [1] and later summarized by Palmer [2].

Energy Conservation for Linear acceleration.–Ac-
cording to Palmer, linear acceleration is possible only if
a particle would radiate in the absence of an accelerating
field since the energy gain of the particle in the presence
of an accelerating field, by energy conservation, should
be proportional to the interference or cross-term between
the accelerating field and the field radiated by the particle.
Palmer argued by pointing out that all known mechanisms
of linear acceleration are in one way or another based on

inverse processes of radiation. From this point of view, it
appears evident that linear acceleration is not possible in
a field free vacuum since a particle moving at a constant
velocity in vacuum would not radiate.

Objective of This Article.– Although the point of view
of Palmer is physically insightful and the argument empir-
ically compelling, a rigorous proof in a general and use-
ful form, despite earnest effort by Zolotorev et al. [3],
remains elusive. Earlier, I pointed out [4] that the appar-
ently intimate relationship between acceleration and radia-
tion can be established fundamentally and rigorously from
the reciprocity principle of electromagnetism. In this arti-
cle, I present the proof.

Reciprocity Principle.– The reciprocity principle of
electromagnetism is rooted in a symmetry in the Maxwell’s
equations, a symmetry between two different solutions.
The principle has been formulated into reciprocity theo-
rems in many different forms for a wide range of applica-
tions. Of these the most well-known are perhaps the theo-
rem derived by Lorentz and another one often attributed to
Rayleigh-Carson. An extensive references on reciprocity
theorems in electromagnetism can be found in [5].

Unique Situation of Particle Acceleration.–Yet, de-
spite the great variety of reciprocity theorems in existence,
none is applicable to the situation of particle acceleration
that we are about to consider, for in which we have to deal
with a current source of a point charge which in time spans
over an infinite region of space. This intrinsic difference
and its influence on the ways we establish a new reciprocity
theorem will become self-evident later on.

Conclusions and Acknowledgments.–A comprehen-
sive user instructions with examples on the reciprocity the-
orem proved here will be published elsewhere. Stimulating
discussions with Max Zolotorev are acknowledged. This
work was supported by the U.S. Department of Energy un-
der contract No.DE-AC03-76SF00098.

PROOF OF THE THEOREM

Formulation of Reciprocity Relations.–Consider two
independent solutions for a given system, field {Ea,Ha}
generated by source {Ja, ρa} and field {Ep,Hp} gener-
ated by source {Jp, ρp}, each satisfying the Maxwell’s
equations, respectively

∇× Ea = −∂Ba

∂t
, ∇× Ha =

∂Da

∂t
+ Ja (1)

∇× Ep = −∂Bp

∂t
, ∇× Hp =

∂Dp

∂t
+ Jp (2)
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Using identity ∇ · (A×B) = B · ∇ × A− A · ∇ ×B, a
relation between the two solutions in differential form can
be obtained from Eq.(1) and Eq.(2)

∇ · (Ea × Hp + Ep × Ha)
+ Pap + Ea · Jp + Ep · Ja = 0 (3)

where Pap = Pe + Pm

Pe = Ea · ∂Dp

∂t
+ Ep · ∂Da

∂t
(4)

Pm = Ha · ∂Bp

∂t
+ Hp · ∂Ba

∂t
(5)

Integrating Eq.(3) over a volume V from which J a is ex-
cluded and over time, we obtain an integral relation

∫ ∞

−∞
dt

∫
S

dSn̂ · (Ea × Hp + Ep × Ha)

+
∫ ∞

−∞
dt

∫
V

dV Pap +
∫ ∞

−∞
dt

∫
V

dV Ea · Jp = 0 (6)

where S is a surface enclosing V with a unit normal vector
n̂ pointing outward from the enclosed region.

Four Conditions Defining the System.–In order to de-
scribe a situation that is generally applicable to particle ac-
celeration, we shall make the following specifications and
assumptions about the system. (I): Take Jp as the current
density of a charged particle

Jp = qvp(t)δ[r − rp(t)] (7)

where rp and vp are the position and velocity of the
particle along a trajectory which, by our assumption of
the two solutions being independent, describes the mo-
tion unperturbed by the electromagnetic accelerating fields
{Ea,Ha}. (II): Separate the unperturbed trajectory into
three segments: for t = {−∞, t1}, vp(t) = v1; for t =
{t1, t2}, vp(t) may vary; and for t = {t2,∞}, vp(t) = v2;
where v1 and v2 are constant velocities with which the par-
ticle enters and leaves a spatial region Vs within which the
particle may interact with a passive environment of the sys-
tem and radiate spontaneously as a result. (III): Assume
that the interaction between the particle and the accelerat-
ing fields is confined in a finite region Vf beyond which the
magnitude of the fields {Ea,Ha} scales inversely propor-
tional to the distance measured from within Vf . (IV): De-
fine an interaction volume by Vint = max(Vs, Vf ) and take
the integration volume V to be sufficiently larger than V int.
Under these four conditions, Eq.(6) can be transformed into
a transparent and convenient form in four steps.

Step 1: Relating the Third Term to Energy Gain.–
Given Eq.(7), the third term in Eq.(6) becomes
∫ ∞

−∞
dt

∫
V

dV Ea · Jp = q

∫ T2

T1

dtEa[rp(t), t] · vp(t) (8)

where T1 and T2 are the times at which the particle en-
ters and leaves the volume V , respectively. Under the con-
ditions (III) and (IV) that the accelerating fields diminish

with sufficiently large V , Eq.(8) approaches the value of
the accumulated energy gain or loss of the particle along
the entire unperturbed trajectory

∆Wp ≡ q

∫ ∞

−∞
dtEa[rp(t), t] · vp(t)

Step 2: Eliminating the Second Term.–The second
term in Eq.(6) can be eliminated altogether. Upon rewriting
Pe and Pm in Eq.(4) and Eq.(5) as

Pe =
∂(Ep · Da)

∂t
+ Ea · ∂Dp

∂t
− ∂Ep

∂t
·Da (9)

Pm =
∂(Hp · Ba)

∂t
+ Ha · ∂Bp

∂t
− ∂Hp

∂t
· Ba (10)

it is noticed that the first terms on the RHS of Eq.(9) and
Eq.(10) vanish after time integration, since Ep·Da = 0 and
Hp ·Ba = 0 within V at t = ±∞, long before and after the
particle enters and leaves the region. In addition, the sec-
ond terms would cancel the third terms if the constitutive
relations take the following form

D(r, t) = ε(r)E(r, t), B(r, t) = µ(r)H(r, t)

which hold in vacuum and in isotropic but nondisper-
sive medium. For more general situations with dispersive
medium, consider the relations in frequency domain

Dω(r) = ε(r, ω)Eω(r), Bω(r) = µ(r, ω)Hω(r)

where the Fourier transform is defined by

Fω(r) =
1√
2π

∫ ∞

−∞
dteiωtF (r, t)

Then, it follows
∫ ∞

−∞
dtPe(t) = i

∫ ∞

−∞
dωω(ε∗ − ε)Eωa · E∗

ωp

∫ ∞

−∞
dtPm(t) = i

∫ ∞

−∞
dωω(µ∗ − µ)Hωa · H∗

ωp

For lossless medium, we have ε∗ = ε and µ∗ = µ, thus
∫ ∞

−∞
dt

∫
V

dV Pap = 0

Step 3: Removing a Singularity in the First Term.–
The first term in Eq.(6) depends on the values of two sets
of fields on the surface S far away from the interaction re-
gion Vint. The fields due to the particle have two parts,
{Ep,Hp} = {Er,Hr} + {Ec,Hc}, i.e., the fields spon-
taneously radiated within Vs by the particle interacting
with the passive system, and the Coulomb fields of a point
charge. Our goal is to prove that at any time t

∫
S

dSn̂ · (Ea × Hc + Ec × Ha) = 0 (11)

As the Coulomb fields are short ranged, {Ec,Hc} have
significant value on the surface only in the region near
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the points where the particle traverses the surface. Hence,
without loss of generality, we define a local Cartesian co-
ordinate system with its origin chosen at the point where
the trajectory of the particle moving along the z-axis with
a constant velocity v intersects the surface in the xy-plane.

The second term in Eq.(11) can be expressed as
∫

S

dSEc · (Ha × n̂) (12)

where Ha × n̂ = Hs
a ŝ, Hs

a is the tangential component
of the magnetic field and ŝ is a unit vector on the surface.
Since the accelerating fields in the far zone must form a lo-
cal plane wave which is either linearly or elliptically polar-
ized, we may choose ŝ = x̂ for the linearly polarized case,
and treat x̂ and ŷ components in ŝ separately but similarly
for the elliptically polarized case.

Assuming, for simplicity, that the charge passes through
the origin at t = 0 and noting that ε = ε0 and µ = µ0

beyond Vs, as required by the condition (II) that no radia-
tion, including Cherenkov and transition radiation, occurs
beyond Vs, the Coulomb fields of a moving charge in vac-
uum are given explicitly by [6]

Ec =
qγ[xx̂ + yŷ + (z − vt)ẑ]

4πε0[x2 + y2 + γ2(z − vt)2]3/2
, Hc = ε0v×Ec

where γ is the Lorentz factor.
It is noted that the surface integral Eq.(12) becomes sin-

gular at the moment the point charge passes through the
origin on the surface. To remove this singularity, we sepa-
rate the integral into two parts, S = S1 + S2, and assume
that the area of S1 is so small that over which H s

a is a con-
stant. As a result, the principal value of the integral over S1

exists and vanishes in the following sense

∫
S1

dSHs
aEc · x̂ = Hs

a

∫ a

−a

dx

∫ b

−b

dyEc · x̂ = 0

Having removed the singularity over S1, it is easy to see
∫

S2

dSHs
aEc · x̂ ∼ 1

R
→ 0

as required by the conditions (III) and (IV), where R is
the distance measured from within Vf . Similarly, it can be
shown that the first term in Eq.(11) vanishes as well.

Step 4: Separating Incoming and Outgoing Waves.–
The first term in Eq.(6) can be further simplified noting
that the accelerating fields constrained by the condition
(III) must have a focal point within Vf . Hence on a re-
mote surface we may separate the fields by {Ea,Ha} =
{Ei,Hi} + {Eo,Ho} with the incoming and outgoing lo-
cal plane waves satisfying Ei = Z0(r̂ × Hi), Hi =
−(r̂×Ei)/Z0 and Eo = −Z0(r̂×Ho), Ho = (r̂×Eo)/Z0,
respectively, where r̂ is a unit vector pointing outward from
a reference point within Vf , and Z0 =

√
µ0/ε0 is the vac-

uum impedance. Noting that the radiation fields by defini-
tion are outgoing waves and using identity A× (B×C) =

(A · C)B− (A · B)C, we have∫
S

dSn̂ · (Ei × Hr + Er × Hi) = 0

and finally, the surface integral is reduced to∫
S

dSn̂·(Eo×Hr+Er×Ho) =
2
Z0

∫
S

dS(n̂· r̂)(Eo ·Er)

Reciprocity Theorem on Particle Acceleration.–Col-
lecting all steps proven above, we obtain

∆Wp ≡ q

∫ ∞

−∞
dtEa[rp(t), t] · vp(t)

= − 2
Z0

∫ ∞

−∞
dt

∫
S

dS(n̂ · r̂)(Eo · Er) (13)

The theorem states that the accumulated energy gain of
a charged particle in the presence of an accelerating field
along an unperturbed trajectory is equal to the overlapping
integral in space and in time of the outgoing accelerating
field with the field radiated by the particle in the far zone
on a surface enclosing the interaction region. Q.E.D.

Theorem Expressed in Frequency Domain.–Al-
though the reciprocity theorem is conditioned and proved
in time domain, once established, however, it can be eval-
uated in frequency domain if it is convenient. Substituting
into Eq.(13) the Fourier transforms of the fields, we have

∆Wp =
∫ ∞

0

dω∆Wωp (14)

where for each frequency component

∆Wωp ≡ q

√
2
π

∫ ∞

−∞
dt Re{Eωa[rp(t)]e−iωt} · vp(t)

= − 4
Z0

Re

∫
S

dS(n̂ · r̂)(Eωo ·E∗
ωr)

Alternatively, Eq.(14) can also be derived following the
similar steps of proof, but starting from the conjugated
pairs of Maxwell’s equations in frequency domain

∇× Eωa = iωBωa, ∇× Hωa = −iωDωa + Jωa

∇× E∗
ωp = −iωB∗

ωp, ∇× H∗
ωp = iωD∗

ωp + J∗
ωp

Nevertheless, it is in time domain that we observe and en-
joy nature in its unobstructed clarity and simplicity.
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