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Abstract

At the interaction point of a storage ring collider each
beam is subject to perturbations due to the electromagnetic
field of the counter-rotating beam. For flat beams, a well
known approximation models the beam by a current sheet
which is uniform in the horizontal plane, restricting the
particle motion to the vertical direction. In this classical
model a water-bag beam distribution is used to find work-
ing points and beam-beam tune shift parameters which lead
to a stable beam distribution. We try to find stability criteria
for a more realistic Gaussian equilibrium distribution. In
order to analyze the instabilities, a linearized Vlasov equa-
tion is solved computing radial and angular modes to first
order in the displacement from the design trajectory.

BEAM EVOLUTION

We model the flat beam as a current sheet which is uni-
form in the horizontal direction, x, and consider only mo-
tion in the vertical direction, y. Consider one-dimensional
phase space distributions ψ1 and ψ2 of the two beams
which are normalized to unity. Then the impulse from the
second (first) on the first (second) beam is

∆y′
1,2 = −Iψ2,1(y, s) (1)

where we define

Iψ(y, s) ≡ 4πNre

γ

∞∫

−∞

dy sgn(y − y)

∞∫

−∞

dy′ψ(y, y′, s) (2)

and N is the number of particles per unit width in x and
re the classical radius of the electron. The equations de-
scribing the motion of ψ1,2 are given by the two Vlasov
equations

∂ψ1,2

∂s
+ y′ ∂ψ1,2

∂y
− K(s)y

∂ψ1,2

∂y′ −

∂ψ1,2

∂y′ δp(s)Iψ2,1(y, s) = 0 (3)

We want to determine whether the beam is stable. That is,
we want to know if small perturbations of the phase space
density grow. Thus, we choose a perturbative ansatz

ψ1,2 = ψ0 ± ∆ψ1,2 (4)

where ψ0 is the equilibrium distribution, i.e. a solution of
eqn. 3 with ψ1(y, y′, s) = ψ2(y, y′, s) = ψ0(y, y′). Sub-
stituting eqn. 4 into eqn. 3, subtracting eqn. 3 written for

the equilibrium distribution and neglecting the term which
is a product of two perturbations we find

∂∆ψ1,2

∂s
+ y′ ∂∆ψ1,2

∂y
− ∂∆ψ1,2

∂y′ F (y, s) −

δp(s)
∂ψ0

∂y′ I∆ψ2,1 = 0 (5)

where

F (y, s) = K(s)y + δp(s)Iψ0(y) (6)

If we approximate the beam-beam force as linear in y

F (y, s) ≈ F (s)y (7)

we can treat the perturbation as a part of the perturbed fo-
cusing function F (s). In the next step we transform eqn. 5
to action-angle coordinates

y =
√

2βJ cos φ y′ = −
√

2βJ sin φ+α cos φ
β (8)

where β denotes the beta function perturbed by the beta
beat due to the linearized beam-beam kick from ψ0. We
choose a smooth approximation in which α = 0. Forming
the linear combinations for the σ- and the π-mode f± =
∆ψ1 ± ∆ψ2, eqn. 5 can be decoupled and rewritten in
action-angle coordinates as

∂f±
∂s

+
1
β

∂f±
∂φ

±
√

2βJ sinφδp(s)
∂ψ0

∂J
If± = 0 (9)

assuming that ψ0 = ψ0(J). In order to stay consistent with
our approximations we still have to linearize the remaining
integral. In the following discussion we omit the label ±.

EQUILIBRIUM DISTRIBUTION

When the interaction term in eqn. 3 is not considered any
differentiable distribution which depends solely on J is an
equilibrium distribution. In general ψ0 will be a function
of both J and φ, though. Fortunately, an arbitrary differ-
entiable function of J is an equilibrium distribution at least
to linear order in y after introducing the perturbed betatron
function. We choose a Gaussian equilibrium distribution

ψ0(J) =
1

2πε
e−

J
ε (10)

since in the presence of damping and quantum excitation
the beam distribution naturally tends to a Gaussian distri-
bution.
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Figure 1: Stability diagram for n = 0, l = −2 . . . 2

SOLVING THE EQUATIONS OF MOTION

We expand the linearized version of eqn. 9 using the
ansatz

f(J, φ, s) =
∑
n′l′

gn′l′(s)e−
J
ε Ln′

(
J

ε

)
eil′φ (11)

where the n’-th Laguerre polynomial is denoted by Ln′ and
the summation runs from 0 to ∞ for n′ and from −∞ to
∞ for l′. Substituting eqn. 10 and eqn. 11 into eqn. 9 we
obtain eqn. 12

COHERENT BEAM-BEAM INSTABILITY

We solve the ODE 12 and rewrite the solution in ma-
trix form such that the beam transport after one turn is de-
scribed by a matrix T which acts on a column vector G that
contains all gnl, i.e. G(C) = TG(0) and parametrize the
beam-current by introducing the tune shift parameter

∆ν ≡ Nre

γ

√
2β∗

πε
, (13)

where β∗ denotes the beta function at the interaction point.
In order to decide whether the system is stable or not we
have to find out what happens to an arbitrary initial pertur-
bation after a large number of turns, i.e. one needs to con-
sider the limit TN where N −→ ∞. Every matrix norm of
the latter quantity tends to infinity if the absolute value of
all eigenvalues of T are bigger than 1.

RESULTS AND DISCUSSION

In Fig. 1 and 2 we have drawn a point if the absolute
value of all eigenvalues of T is smaller or equal 1 for both
the σ- and the π-mode. The first and second order reso-
nances can be recognized clearly. Resonances of orders
higher than 2 cannot be expected in our linearized model.
From the diagrams we conclude that the inclusion of ra-
dial modes tends to stabilize the beam. In Fig. 3 and 4
we determine which mode becomes unstable by selecting
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Figure 2: Stability diagram for n = 0 . . . 2, l = −2 . . . 2

Figure 3: Absolute value of the largest eigenvalue vs. per-
turbed tune. Light grey points indicate unstable l = ±1
modes, medium grey and dark grey points indicate unsta-
ble l = ±2 modes. The following modes were included:
n = 0, l = −2 . . . 2

the biggest component of the eigenvector which is associ-
ated with the largest eigenvalue. The plot shows that in the
absence of dynamics in the radial direction l = ±1 and
l = ±2 modes become unstable in the vicinity of ν = 0.5,
but in Fig. 4 only l = ±1 modes are excited around
ν = 0.5. Furthermore, the unstable l = ±2 modes which
accumulate in the vicinity of ν = 0.25 and ν = 0.75 are
attenuated. Therefore, the radial motion leads to a damping
of the l = ±2 modes.

In Fig. 5 we computed the phase of the largest eigen-
value of l = ±2 instabilities (σ-mode only) versus the per-
turbed tune for various ∆ν. The slope of the two lower
lines is 2 which indicates that the collective oscillation fre-
quency of the quadrupole mode is twice the single particle
oscillation frequency. In Fig. 6 the spread is significantly
lower. In an unstable region the imaginary part of the high-
est eigenvalue vanishes which causes those characteristic
plateaus.
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∂gnl

∂s
+

il

β
gnl ±

(2n)!
√

π

2(2n − 1)(2nn!)2
4πNre

γε2

√
2βε

2π

1
2i

(δl,1 − δl,−1) δp(s)

[
−4ε

∑
l′

g0,2l′+1
(−1)l′

2l′ + 1

]

±2β(−1)
2π

1
4i

4πNre

γε
(δn,0 − δn,1) (δl,2 − δl,−2) δp(s)

[
2
√

2ε

β

∑
n′l′

gn′,2l′(−1)l′ (2n′)!
√

π

(2n′n′!)2

]
= 0 (12)

Figure 4: Same as Fig. 3, but for n = 0 . . . 1, l = −2 . . . 2

Figure 5: Phase vs. perturbed tune for n = 0, l = ±2
modes (σ-mode only).

Figure 6: Phase vs. perturbed tune for n = 0 . . . 1, l = ±2
modes.

POSSIBLE EXTENSIONS

We have extended our model to account for damping
by synchrotron radiation. In order to obtain the equilib-
rium distribution 10 quantum excitation must be included
as well. This turns eqn. 3 into a Fokker-Planck equation.
In our preliminary computations we found that the graphs
we presented above remain unchanged for realistic values
of the damping and excitation coefficients. To simplify the
Fokker-Planck equation we averaged over the phases in the
damping and excitation terms but not in the beam-beam
interaction term. This can be justified since the betatron
phases in the terms for damping and quantum excitation
change during one turn while the phase in the interaction
term changes only once per turn.

Higher order resonances can be studied by not lineariz-
ing the integral in eqn. 9 and assuming that f± contains
only one radial mode. However, this procedure is compli-
cated by the fact that eqn. 10 is not an equilibrium any-
more. Ignoring these problems one can obtain plots similar
to Fig. 1 with higher order resonances. For accelerators
with different tunes for the rotating and counter-rotating
beam a bigger transfer matrix which describes the evolu-
tion of the gnl for both beams can be derived easily.
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