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Abstract 
In the design of high-intensity proton synchrotrons and 
accumulator rings, quadrupole magnets of narrower size 
in one of the transverse dimensions are often needed to 
accommodate the compact ring geometry, the various  
injection and extraction devices, and the large vacuum 
chamber aperture. The stringent limit on tolerable beam 
loss further demands a good magnetic field quality to 
minimize beam resonances caused by higher-order 
magneticmultipoles.  
In this paper, we present results from magnetic field 
calculations performeed on 2D and 3D models of a large-
aperture narrow-quadrupoles that is suitable for a high 
intensity, low beam-loss accumulator rings . The pole 
face of the quadrupole has been optimized to minimize 
the integrated field of the first three allowed multipoles 
(12pole,20pole and 28pole). The ratio of each integrated 
magnetic-multipole-strength to the integrated magnetic-
quadrupole-strength at a radius of 85% of the quad's pole-
tip-radius is less than 2x10-4. Results from the 
calculations performed on the two-dimensional and three-
dimensional models of the narrow quad are presented. 

1 INTRODUCTION 
In a published paper[1] we provide detailed information 
about the design of a �narrow quadrupole� that has been 
built to be used in the SNS accumulator ring[2]. The 
transverse dimension of the quadrupole on the horizontal 
plane has helped accommodate the various devices which 
are located at the injection and extraction regions[1] of 
the SNS accumulator ring. The main requirements for the 
magnetic design of the narrow quadrupole was to 
minimize the integrated strength of the 12pole magnetic 
multipole down to ∫B12poledz/∫B4poledz <2x10-4 at a radius 
of r=10 cm, and we did not regard the contributions from 
the 20pole and 28pole multipoles. Table I shows the 
integrated strength of these multipoles relative to the 
integrated quadrupole strength as were calculated by the 
3-Dimentional model and also as were measured in the 
first built quadrupole.  
In Table 1, Rn= ∫Bn(r,z)dz/∫B1(r,z)dz where Bn(r,z) is the 
nth coefficient in the expansion of the radial field Br(r,z) 
Br(r,z) =∑Bn(r,z)cos[(n+1)θ]  {n=1 quad, n=3 oct �} (1) 
The Br(r,z) is calculated and measured at a radius r=10 cm 
and the coefficients Bn(r,z) are integrated along the z-axis 
which is along the beam direction.  
In Table 1, the 2nd  row shows the calculated quantity Rn , 
and the 3rd and 4th rows the measured quantity Rn for the 
quadrupole as it was delivered by the manufacturer  
___________________________________________  

* SNS is managed by UT-Battelle, LLC, under contract  
DE-AC05-00OR22725 for the U.S. Department of Energy.  

(3rd row) and with a minor modification (reduce the 
transverse pole length by 0.75 mm), (4th row). The 
modification resulted in reduction of the R(12pole) multipole 
strength down to 1.2x10-4. The error in the measurements 
of the harmonics was ±0.02x10-4 
 

Table 1: The Ratio Rn of few allowed multipoles. The 
quantity Rn is defined in the text. 

 R5 (12pole) R9 (20pole) R 13 (28pole) 
CALC -4.2x10-4 -5.2 x10-4 -1.5 x10-4 

MEAS#1 +3.20x10-4 -6.90 x10-4 -1.20 x10-4 
MEAS#2 +1.20x10-4 -6.81x10-4 -0.92 x10-4 

 
Calculations performed on the SNS ring [3] showed that 
the measured strength of the (20 and 28)poles multipoles 
(see Table 1) of the narrow quadrupole are well below the 
limits that may bring the beam into resonance and cause 
significant beam emittance growth that will result in beam 
losses. Nevertheless we thought as a useful task to design 
a narrow quadrupole that minimizes the first three 
allowed multipoles (12,20,28)pole.The following sections 
are dealing with the design of such a narrow quadrupole. 

2 THEORY FOR THE MAGNET DESIGN  
Poisson�s theorem states that the magnetic field vector B 
(or any vector, regular at infinity) can be expressed as: 

B(x)=(1/4π)∫{[∇′ (∇′ ⋅B)- ∇′ x(∇′ xB)]/|x-x′ |}d3x′   (1) 
By defining the magnetization vector 
    M=B-µ0H        (2)  
and using the Maxwell equations ∇′ ⋅B=0  and ∇′ xH=J  
equation (1) becomes: 
B(x)=(1/4π){∫[µ0∇′ xJ+∇′ x(∇′ xM)]/|x-x′ |}d3x′   (3) 
Equation (3) expresses the magnetostatic field B(x) as the 
contribution of two terms; one term corresponding to the  
currents distribution J the other term to the magnetization 
M of the materials. With  JM=(1/µ0)(∇′ xM)   equation (3) 
can also be written (see ref. [4]) as:  
B(x)=(µ0/4π)[∫∇′ xJ/|x-x′ |]d3x′+∫JMxru/|x-x′ |2d3x′  
+∫(Mxnout)xru/|x-x′ |2d2x′   (ru=unit vector along x-x′)  (4)  
In equation (4) the second integral extends over the 
interior of the finite volume of the magnetic material, and 
the third integral over the surface enclosing the volume of 
the magnetic material (nout=normal to the surface). It is 
the contribution of the third integral that can affect the 
strength of the various allowed multipoles by altering the 
contour of the pole face. We assume that the value of the 
permeability µ of the iron at the vicinity of the pole 
surface has a value µ>>1 for the third integral to have an 
effect on the magnetic multipoles.  It is therefore possible 
to affect the magnetic field in the space of the beam by 
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modifying the contour of the pole tip of the quadrupole. 
This approach [5] was followed in the design of  narrow 
quadrupoles. In this paper we employ more sophisticated 
contour of the pole tip and we extend the calculations in  
three dimensions. 
 

3 TWO-DIMENSIONAL MODELING 
In this section we present the results of the two 
dimensional magnetic calculations as applied to three 
designs of the narrow quadrupole. The designs will be 
refered in the text as A,B and C. In each of the designs, 
discussed below, we provide enough information about 
the cross section of the narrow quadrupoles, for the reader 
to repeat the calculations using her/his preferred computer 
code for the elelectomagnetic design. In all three designs 
the strength of all allowed multipoles B(12pole,20pole,28pole) 
was calculated at r=10cm and the  B(12pole,20pole,28pole)/Bquad 
ratio was reduced below the value of 1x10-4. The 
deviation of the narrow quad  from the four fold 
symmetry, introduced multipoles like octupoles, 16poles 
etc. However the relative strength of each of the 
multipoles (B(8pole,16pole,24pole)/Bquad) was below the value of 
1x10-5 at r=10 cm. In each of the designs we kept intact 
both, the outside dimensions of the quadrupole (shown in 
Fig. 1)  and the pole tip radius Rp and we only varied the 
width of the pole piece W, and the pole tip contour.  
In order to keep the permeability of the iron at a 
reasonable large value µ>>1, the quadrupole strength of 
each of  the models was also kept at a value of ~4.2 
[T/m]. All calculations were performed using the 
computer code for electomagnetics of Vector_Fields[6].  
 
3.1 Narrow Quadrupole Design_A 
 
The cross section of one of the pole pieces of the 
desisign_A quadrupole is shown in Fig 2. In this design 
we kept the contour of the pole tip similar to the contour 
of the narrow quad discussed in ref [1] but we increased 
the pole width (W) to a value of 19.8 cm, to achieve 
minimization of the 20pole and  28pole multipoles. The 
design was finally optimized by modifying the contour of 
the pole face, by varying the radii of curvature ρi ,ρo  and 
the location of  the inflection points P1,P2 ,shown in Fig 2. 
The optimization yielded a ratio  Bn/Bquad of <1x10-4 at a 
radius r=10 cm for the (12, 20, 28)pole multipoles. 
The increase of the pole width (W) however reduced the 
area of the current conductor which has to run at a higher 
current density (J) to achieve the quadrupole  strength of 
~4.2 [T/m]. An alternative design which satisfies the 
requirements of low relative strength Bnpole/B4pole<1x10-4, 
for the (12, 20, 28)pole multipoles, and also provides 
more conductor area, is discussed in the next subsection. 
 
3.2 Narrow Quadrupole Design_B 
 
The cross section of this alternative design of a narrow 
quadrupole is shown in Fig. 3. In this design the width of 
the pole piece has been reduced to 17.6 cm but the overall 

shape of the pole tip surface remained almost the same  as 
in design_A with only small modifications of the location 
of the inflection points P1,P2 and radii of curvature ρi, ρo. 
These minor modifications reduced the relative strength 
Bnpole/B4pole of the (12, 20, 28)pole multipoles, below the 
required value of 1x10-4 at a radius r=10 cm. 

 
 
Figure 1:    Cross section of the narrow quad. The outer 
dimensions were the same for all designs A,B, and C.  
 

 
 
Figure 2. Cross section of pole piece corresponding to 
�design A� (see text).  The inflection points P1,P2 , and 
the radii of curvature ρi , ρo  were varied in order to 
minimize the strength of the (12,20,28)pole multipoles.  
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Compared with design A, this design allows for an 
increased cupper area and the required gradient of ~4.2 
[T/m] is achieved at a reduced current density, but the 
magnetic field B inside the poles will be higher.  
 

 
 
Figure 3. Cross section of pole piece for  �design B� .   
 
3.3 Narrow Quadrupole Design_C 
 
This design combines the features of the design_A and 
design_B namely larger conductor area (same as in 
design_B) and lower value  of the magnetic flux density 
B in the pole pieces (as in design_A). The cross section is 
shown in figure 4. Tthe relative strength Bnpole/B4pole of 
the (12,20,28)pole is minimized to values < 1x10-4. 
Compare the contour shape of design_C with that of 
designs_A or B. 

 
 

Figure 4. Cross section of the pole piece of  �design_C�. 

4 THREE-DIMENSIONAL MODELING 
 

Practical considerations lead us to perform the three 
dimensional magnetic field calculations on the 
�design_C�. The goal was to minimize the relative 
integrated strength ∫Bnpoledz/∫B4poledz of the (12,20, 
28)pole multipoles. The method of optimization was to 
chamfer the edges of the pole pieces at both, the entrance 
and exit of the magnet [1] as shown in figure 6. The �pole 
chamfering� reduced the integrated strength of the 12pole 
multipole but introduced some strength in the 20pole and 
28pole multipoles. This strength was reduced by 
reshaping slightly the contour of the pole tip inside the 
magnet. The optimization yielded the following results:   
∫B12poledz/∫B4poledz=2x10-6   ∫B20poledz/∫B4poledz=4x10-5 

∫B28poledz/∫B4poledz=5x10-5  at r=10 cm. 
  

 
 
Figure 5 An isometric view of the chamfered  ends of one 
of the pole-piece of the narrow quadrupole.  

5 CONCLUSIONS 
Two dimensional magnetic field calculations were 
performed on three models of a large aperture narrow 
quadrupole. Each of the models was optimized to 
minimize the relative strength Bnpole/B4pole of the (12, 20, 
28)pole multipoles to values less than 1x10-4 at a radius 
r=10 cm. One of the models was optimized using 3D 
magnetic field calculations. 
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