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Abstract

Recently a method to measure chromaticity has been
proposed by applying a transverse and a longitudinal kick
to the beam. Assuming a Gaussian bunch in the 6-
dimensional phase space, analytical expressions were de-
rived, which relate the synchrotron sidebands to the ma-
chine chromaticity. To assess limitations and extensions
of this technique, a more realistic accelerator model is con-
sidered including dispersion, transverse non–linearities and
second order chromaticity, which modify the Fourier spec-
trum. Tracking and analytical studies are performed to de-
scribe these effects.

INTRODUCTION

The standard procedure for measuring the machine chro-
maticity is based on changing the beam energy and central
orbit via frequency modulations of the radio frequency sys-
tem. The chromaticities are then inferred by the variation
of the machine tunes. The above procedure tends to be
lengthy and perturbs the normal machine operation. Nev-
ertheless a recent study has shown that by using a phase
locked loop tune meter the performance of this method can
be largely improved [1]. Various alternative techniques
to measure chromaticity have been proposed during the
last years. Two remarkable ones are described in [2], [3]
and [4]. The first one uses the phase difference between the
oscillations of the head and the tail of the bunch. The sec-
ond one consists in modulating the radio frequency phase
and measuring the induced tune modulation.

In [5] yet another method to determine the chromatic-
ity is proposed by measuring the amplitude and phase of
the synchrotron sidebands of the transverse motion after si-
multaneously applying a longitudinal and a transverse kick.
The analytical expression obtained in this paper for the am-
plitude of the synchrotron sideband of orderq, i.e. with
frequency given byQx + qQs, is expressed as

AMP (q) = e−ς2 |Iq(ς2 − iςk)| , (1)

whereς = Q′
xσδ/Qs, Q′

x is the chromaticity,σδ is the
momentum spread andk is the longitudinal kick in sigma
units. This expression holds for a Gaussian bunch matched
to the bucket, i.e.σδ = σz

Qs

ηR , η being the slippage fac-
tor andR the machine radius. To obtain this expression
a linear motion was assumed both in the longitudinal and
the transverse planes and only first order chromaticity was
considered. The above equation shows that by applying the
longitudinal kick the amplitudes of the synchrotron side-
bands are linear (first non vanishing order) in the chro-
maticity. The sign of the chromaticity is contained in the
phase of the sidebands.

To assess limitations and extensions of this technique a
more realistic accelerator model is considered in this ar-
ticle including dispersion, transverse non–linearities and
second order chromaticity. A Gaussian bunch matched to
the bucket will be assumed for the derivations. Macroparti-
cle simulations using theHEADTAIL [6] code are also per-
formed.

CONSIDERING DISPERSION AND
NON–LINEARITIES

The most relevant effect of non-linearities is the fact that
they produce amplitude detuning and, as a consequence,
the decoherence of the beam oscillations after a transverse
kick. In this paper we assume that the amplitude detuning
is low enough to ensure the resolution of the synchrotron
sidebands in the Fourier spectrum of the transverse mo-
tion. This condition is normally desirable in the normal
operation of an accelerator.
The transverse dynamics of a particle in presence of chro-
maticity, dispersion and non-linearities is approximated by
assuming that the energy oscillations are much slower than
the transverse oscillations. The equation describing the
transverse motion is obtained by directly introducing the
time dependence of the energy in the expressions derived
for a constant energy. Therefore the most relevant contribu-
tions to the dynamics are those produced by the feed down
from the non–linear fields due to the dispersion offset. In
general, the contribution of all the feed down fields to the
transverse motion can be taken into account by introducing
chromatic Twiss parameters in the following way,

Q = Q0 + Q′δ +
1
2
Q′′δ2 + ...

β = β0 + ∆β1δ + ... (2)
D = D0 + D1δ + ... ,

whereβ represents the betatronic function andD the dis-
persion function. In the first place we describe the Fourier
spectrum of the motion considering only the first chromatic
order of Twiss parameters. In the following section the ef-
fect of Q′′ will be studied. The single particle position as
function of the turn number is given by taking into account
all the former quantities in the following way,

x(s,N) = |a|
√

1 +
∆β1

β0
(s)δ(N)

× cos(2π(Qx + ∆Qx(N))N + φx)
+D0(s)δ(N) + D1(s)δ2(N) , (3)

whereδ(N) is the relative momentum deviation as function
of the turn number,

δ(N) = δ cos(2πQsN) + z
Qs

ηR
sin(2πQsN) , (4)

0-7803-7739-9 ©2003 IEEE 2234

Proceedings of the 2003 Particle Accelerator Conference



δ and z being the initial longitudinal coordinates and
∆Qx(N) is the integral ofQ′

xδ(N) from the turn 0 to the
turn N divided byN . It can be deduced from the above
equations that the chromatic beta beating modifies the syn-
chrotron sidebands and the orbit oscillates with the fre-
quenciesQs and2Qs due to the dispersion and the chro-
matic dispersion. The contribution of sextupoles to the
chromatic beta beating is produced by the quadrupolar feed
down due to the dispersion at the sextupole and is expressed
as

∆β1

β
(s) =

∫ s+C

s

ds′
K2(s′)D0(s′)β0(s′)

2 sin(2πQx)
(5)

× cos(2πQx − 2|φx(s′) − φx(s)|) ,

whereK2 is the sextupole strength. The contribution of
sextupoles to the chromatic dispersion is produced by the
dipolar feed down due to the dispersion at the sextupole
and is expressed as

D1(s) =

√
β0(s)

4 sin(πQx)

∫ s+C

s

ds′
√

β0(t)K2(s′)

×D2
0(s

′) cos(φ(s′) − φ(s) − πQx) . (6)

Contributions from other multipoles can be similarly com-
puted. The motion of the centroid is obtained by averaging
the single particle motion over the initial bunch density, i.e.

x(s,N) =
∫ ∞

−∞
dδ

∫ ∞

−∞
dzρ(δ, z)x(s,N) , (7)

whereρ(δ, z) is the longitudinal density of the Gaussian
bunch displaced in thez axis byk sigmas. To solve this
integral the chromatic beta beating is assumed to be much
smaller than one and the square root of Eq. (3) is expanded
up to first order. To obtain the centroid motion the follow-
ing integrals are needed,∫ ∞

−∞
dδ

∫ ∞

−∞
dzρ(δ, z)δ(N)ei2π∆Qx(N))N = σδ(k + iς)

× sin(2πQsN)e(ς2−iςk)(cos(2πQsN)−1) ,

∫ ∞

−∞
dδ

∫ ∞

−∞
dzρ(δ, z)δ(N) = σδk sin(2πQsN) , (8)

∫ ∞

−∞
dδ

∫ ∞

−∞
dzρ(δ, z)δ2(N) = σ2

δ [1 + k2 sin2(2πQsN)] .

The frequencies and amplitudes of the different spectral
lines arising in the Fourier spectrum ofx(s,N) are given
in table 1. It is particularly interesting to note that the fun-
damental spectral lineQx is not affected by the chromatic
Twiss parameters and that the amplitude of the sideband
Q+ |q|Qs is different from that ofQx −|q|Qs. This differ-
ence is linear in the chromatic beta beating, the longitudi-
nal kick and the chromaticity. Therefore this difference can
be used to determine the sign of the chromaticity, provided

Frequency Amplitude

Qx + qQs

e−ς2 |a|
∣∣∣Iq(ς2 − iςk) + ∆β1

4iβ σδ(k + iς)

×[Iq−1(ς2 − iςk) − Iq+1(ς2 − iςk)]
∣∣∣

Qs
1
2D0(s)σδk

2Qs
1
4D1(s)σ2

δk2

Table 1: Frequencies and amplitudes of the different spec-
tral lines produced by dispersion and sextupolar fields.

that the chromatic beta beating is known or a calibration is
done using another method for determining the chromatic-
ity. Likewise, if the chromaticity is known the chromatic
beta beating could be measured around the ring.

In order to verify the achieved expressions a macropar-
ticle simulation has been performed using a model of the
CERN SPS. One sextupolar kick at a dispersion region has
been introduced in theHEADTAIL code. The value of the
dispersion was chosen to be the average dispersion at the
SPS sextupoles,D = 2.24 m. The strength of the sextupo-
lar kick was chosen to reproduce the chromatic beta beating
at the start of SPS,K2L = −0.254564 m−2. Second order
chromaticity was well corrected by means of a phase space
rotation and chromaticity isQ′ = −0.279. The simula-
tion was performed for a longitudinal kick of one sigma,
σδ = 0.00248 and the synchrotron tune isQs = 0.005. In
Fig. 1 a comparison of the Fourier spectrum obtained from
the simulation and the prediction from the model is shown.
Although a relevant discrepancy is found for the second or-
der sidebands the first order sidebands are well described
by the model. This means that second order chromatic
Twiss parameters should be considered to properly describe
second and higher order synchrotron sidebands. Simula-
tion and model agree with remarkable precision concerning
D1, as appears from the spectral line with frequency2Qs.
This is a very relevant quantity that contains the local non–
linear information in a similar way as the resonance driving
terms do. It is evident from the figure how important higher
orders are, since data were acquired at a dispersion free re-
gion but yet lines withQs and3Qs are observed. We can
conclude that using the first order synchrotron sidebands of
all the BPMs around the ring this technique can provide not
only chromaticity but also chromatic beta beating and local
non–linear information.

Second order chromaticity

This section studies the effect of the second order chro-
maticity in the Fourier spectrum of the centroid motion. An
analytical expression for the turn-by-turn centroid position
is derived considering first and second order chromatici-
ties but not any chromatic Twiss function. The tune shift
∆Qx(N) is given by the integral ofQ′δ(N)+Q′′δ2(N)/2
from the turn 0 to the turnN divided byN , giving the fol-
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Figure 1: Fourier spectrum of the simulated turn-by-turn
motion together with the prediction from the model. Top:
Tune and synchrotron sidebands. Bottom: Offset and mul-
tiples ofQs.

lowing expression,

Q′
x

2πQsN

[
δ sin(2πQsN) − z

Qs

ηR
(cos(2πQsN) − 1)

]
+

Q′′
x

4πN

[δ2

2

(
N+

sin(4πQsN)
4πQs

)
+

δz

ηR4π
(1−cos(4πQsN))

+
z2Q2

s

2η2R2

(
N − sin(4πQsN)

4πQs

)]
.

The centroid positionx(s,N) is computed as in Eq. (7)
with the above tune shift and it is obtained by taking the real
part of the following expression (up to a proportionality
constant):

e

−ς(k+iς)

[
(i+ς2N)(cos(2πQsN)−1)+

ς2
2πQs

S(N)

]
+F (N)

1−2iς2N+ς2
2

[
−N2+

sin2(2πQsN)
4π2Q2

s

] +i2πQxN

√
1 − 2iς2N + ς2

2

[
− N2 + sin2(2πQsN)

4π2Q2
s

]

S(N) andF (N) being

S(N) = sin(2πQsN) − sin(4πQsN)/2 (9)

F (N) = −ik2
(
i + ς2N + ς2

sin(4πQsN)
4πQs

)
/2 ,

whereς2 = πQ′′σ2
δ . This equation shows that for large

N the oscillation amplitude is damped proportionally to
1/(ς2N). This effect increases the width of the synchrotron
sidebands. The analytical description of the Fourier spec-
trum is too complicated to be usable. To illustrate this a
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Figure 2: Fourier spectrum and centroid position in pres-
ence of first and second order chromaticity from the simu-
lation and from the analytical formula.

simulation has been performed with the same SPS model
as above but withQ′ = −0.279, Q′′ = −150 and with-
out the sextupolar kick. The turn-by-turn centroid position
and the Fourier spectrum obtained from the simulation and
the analytical formula are shown in Fig. 2. The first syn-
chrotron sidebands can still be used to estimateQ′ although
a largerQ′′ would completely distort the Fourier spectrum.

CONCLUSIONS

It has been demonstrated that for small amplitude de-
tuning and second order chromaticity the proposed tech-
nique can be used to measure chromaticity and to obtain in-
formation concerning chromatic Twiss functions and non-
linearities. It probably remains important to study the effect
of the non-linearity of the longitudinal phase space motion
and collective effects.
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