
APPLICATION PROGRAMMING STRUCTURE AND PHYSICS
APPLICATIONS*

C.M. Chu, J. Galambos, W.-D. Klotz§, T. Pelaia, A. Shishlo, ORNL, Oak Ridge, TN, USA
C.K. Allen, C. McChesney, N. Pattengale, LANL, Los Alamos, NM, USA

D. Ottavio, BNL, Upton, NY, USA

Abstract
 The Spallation Neutron Source (SNS) is using a Java

based hierarchal framework for application program
development. The framework is designed to provide an
accelerator physics programming interface to the
accelerator, called XAL. Much of the underlying interface
to the EPICS control system is hidden from the user. Use
of this framework allows writing of general-purpose
applications that can be applied to various parts of the
accelerator. Also, since the accelerator structure is
initiated from a database, introduction of new beamline
devices or signal modifications are immediately available
for all XAL applications. Direct scripting interfaces are
available for both Jython and Matlab, for rapid
prototyping uses. Initial applications such as orbit
difference, orbit correction and a general purpose
diagnostic tool have been developed and tested with the
SNS front end. The overall framework is described, and
example applications are shown.

INTRODUCTION
The SNS is an accelerator for pulsed, high-intensity

neutron production. For general-purpose, high-level
accelerator physics applications for SNS commissioning
and operation, a Java-based software infrastructure called
XAL [1] is designed and implemented. The XAL is a
programming framework providing an object-oriented
model of an accelerator, interfaces to the SNS control
systems for dynamic data and to the SNS global database
[2] for static information, interfaces to various external
modeling software packages, and a built-in lattice tool [3]
mainly for quick, on-line calculation. The entire
application software infrastructure is shown schematically
in Fig. 1. A subset of the global database is extracted into
portable extensible markup language (XML) formatted
files which can be any part of the entire accelerator. The
communication between the applications and the control
hardware is through an EPICS Java Channel Access layer
embedded in the XAL. Also, an optional data correlation
engine in the XAL ensures the event data collected all
occurred within a specified time window, usually the
beam pulse width. The framework also provides standard
user interface design such as common look-and-feel, Java

logging and user preferences, and on-line help in HTML
form. To test the framework and applications without a
real accelerator running most of the time, we rely on an
accelerator simulator called the virtual accelerator [4]
with Trace-3D and PARMILA as model engines and
portable channel access server as EPICS data provider.
The advantages of this simulator are model-based
simulation, and the same data acquisition interface and the
same EPICS process variable (PV) settings as been used
on the real machine.

Figure 1: Application software infrastructure.

APPLICATION FRAMEWORK
In Fig. 1, the application framework is represented in

the top box plus the connection to the database. A more
detail diagram of the framework can be found in Fig. 2.
The figure is also a simplified SNS application software
design layout. The major parts of this software
infrastructure can be categorized in the following
subsections.

XAL toolkits
This is the core part of the framework. The framework

design is based on hierarchal view of the machine,
namely, a tree-like structure with accelerator sequences as
branches and accelerator nodes as leaves. However, this
physical view of the machine is not quite suitable for
accelerator lattice which also contains drift space, split
elements for various physics reasons and devices sitting
on top of each other. Therefore, a conversion between the
machine view and lattice view is introduced in the XAL.
The XAL toolkits contain the followings:

* SNS is a collaboration of six US National Laboratories: Argonne
National Laboratory (ANL), Brookhaven National Laboratory (BNL),
Thomas Jefferson National Accelerator Facility (TJNAF), Los Alamos
National Laboratory (LANL), Lawrence Berkeley National Laboratory
(LBNL), and Oak Ridge National Laboratory (ORNL). SNS is
managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725
for the U.S. Department of Energy.
§ Also at ESRF, Genoble, France.

0-7803-7739-9 ©2003 IEEE 2360

Proceedings of the 2003 Particle Accelerator Conference

• On-line modeling tool providing a quick particle
trajectory or envelope calculation. Currently we use
external Trace-3D routine as the modeling tool. The
on-line modeling tool will replace this external call
and increase the flexibility and robustness.

• Standard machine format (SMF) defining an
hierarchal view of the accelerator, implementations
for various beam-line devices, sets of attributes for
both static and dynamic data, and XML parser for
file input/output of the accelerator object in XML
format.

• Lattice generator providing the conversion between
hardware view of the machine (a list of accelerator
nodes) and physics view of the machine (lattice
elements).

• XAL specific tools such as generating input files
with XAL lattice generator for external modeling
tools, setting or gathering multiple EPICS PVs.

Channel Access
The communication between XAL applications and

accelerator hardware is through channel access. A Java
wrapper layer over the native C language libraries
provides extra exception handling, thread management
and convenient methods for Channel Access. We plan to
replace both the wrapper and the Java-to-C library by a
pure Java communication protocol in the future.

General Tools
There is a collection of general-purpose tools for

applications. These tools can be used independent of
XAL. Here is a brief list of the tools:
• Mathematical tools such as elliptical integration.
• Graphical User Interface (GUI) components.
• General polynomial data fitting routine.
• Time correlation for gathering data events within a

specified time window. This is a very important
requirement for a pulsed machine.

• Standard messaging for saving and passing Java
messages.

Database Utilities
As shown in Fig.1, a subset of the global database in

XML format is parsed in by applications for initializing
accelerator objects. The advantage of this intermediate
XML file is portability and providing a hierarchal view of
the database. So far we have demonstrated that the lattice
generated from the database designed values via the XML
file produces the same model result as the original design.
Alternatively, direct access from applications to the global
database is also possible. The database query and
automatic XML generation, and several data validation-
check routines are provided.

Scripts and Examples
Scripting language such as Jython can be a quick

development or software debugging tool. Also, the
Matlab scripting language provides many data analysis
tools. Both Jython and Matlab can access XAL by
importing their own Java interface libraries. General
examples are also provided for quick tutorial purpose.
Once a script is proven useful and needs to be more user-
friendly, we convert the script to a real Java application.

Application GUI Framework
The idea of using a standard application GUI

framework is to try to give every application share the
same look-and-feel, so a general user can learn how to use
an application more quickly. Also, many GUI
components can be re-used in different applications, such
as logging service, user-defined preferences, file input and
output, etc. This GUI framework can greatly reduce the
development time for user interfaces.

As shown in Fig. 3, all the XAL applications will use
this GUI framework with common pull-down menus,
editing buttons, console output panel, window control and
on-line HTML help feature. Application writers can

Figure 2: Application framework overview.

2361

Proceedings of the 2003 Particle Accelerator Conference

easily replace or add to any pre-defined feature with
customized ones.

Applications
There have been more than a dozen of applications using
Java/XAL framework. Examples are orbit display, orbit
correction, general-purpose EPICS process variable
display, 2-dimensional and 3-dimensional correlation
plots, and many other scripts. We also converted some
applications originally written in Matlab to XAL-based
Java applications for maintenance and improvement
purposes. Several applications as examples are discussed
in the next section.

Figure 3: XAL application GUI common look.

APPLICATION EXAMPLES

General Purpose Diagnostic Display
A general purpose beam-line device display application

is written for quick device diagnosis purpose. As shown
in Fig. 4, the application can display same type of beam-
line devices� signals along a given accelerator section as
2-D scattered plot or the same type of PVs versus time as
water-fall plot. Plot updating at 5 Hz still maintains
reasonable performance. The data plotting package used
here and many other applications is JClass version 6.1 [5].

Figure 4: General purpose device display screen snapshot.

Orbit Display
The Orbit display application compares the model-

predicted beam trajectory and the beam position monitor
(BPM) measured average beam positions. In Fig. 5, the
horizontal trajectory differences between before and after
a dipole corrector strength change are plotted. The filled
circles are model prediction and the squares are BPM
measurement. In this particular application, the modeling
tool is external Trace-3D Fortran code compiled as a
shared library. The initial beam coordinates and
momentums for the model are manually settable via user
interface.

Figure 5: Partial screen snapshot of Orbit Difference
Display application.

CONCLUSION
The SNS application framework is in production mode.

Many applications using this framework have been tested
during the SNS front end commissioning. As the XAL
framework becomes more and more stable, we will speed
up new application development and convert existing
Matlab applications to use this framework. With a
common look-and-feel for each application, the end-user
will not suffer a steep learning curve. Also, the on-line
lattice tool will be tested in the next commissioning
period.

ACKNOWLEDGEMENTS
 The authors would like to thank the SNS Controls,

Diagnostics and Database groups for their great efforts of
providing us various hardware and software support. All
the other members in the SNS Accelerator Physics group
deserve the credit for their valuable suggestions and help.
We also thank Dr. N. Malitsky for the original XAL
design work.

REFERENCES
[1] http://www.sns.gov/APGroup/appProg/xal/xal.htm.
[2] J. Galambos, et al., �SNS Global Database Use in

Application Programming�, these proceedings.
[3] C. Allen, et al., �A Modular, Online Simulator for

Model Reference Control of Charged Particle Beams�,
these proceedings.

[4] A. Shishlo, et al., �The EPICS Based Virtual
Accelerator � Concept and Implementation�, these
proceedings.

[5] http://java.quest.com/jclass/jclass.shtml.

2362

Proceedings of the 2003 Particle Accelerator Conference

