
CROSS PLATFORM SCA COMPONENT
USING C++ BUILDER AND KYLIX∗

H. Nishimura, C. Timossi and J.L.McDonald, LBNL, Berkeley, CA 94720, USA

Abstract

A cross-platform component for EPICS Simple Channel
Access (SCA) has been developed. EPICS client programs
with GUI become portable at their C++ source-code level
both on Windows and Linux by using Borland C++ Builder
6 and Kylix 3 on these platforms respectively.

INTRODUCTION

The Advanced Light Source (ALS) control system is mi-
grating from its original x86-based system[1] to an EPICS-
based system[2]. To ease the migration of existing appli-
cations to EPICS for the application developers, a client
API library called Simple Channel Access (SCA) was de-
veloped. Subsequently, SCA was packaged as a Java Na-
tive Interface and later, using the same interface, as an
ActiveX component for the Windows platform (SCAcom
[3][4]). This re-packaging makes the underlying SCA a bet-
ter fit for both the Java environment and for the numerous
development tools on Windows: Visual C++, Visual Basic,
Borland Delphi/C++ Builder and LabView.

Recently we packaged SCAcom to make it available
both to Delphi 6 for Windows and to Kylix 2 for Red-
hat Linux 7.3. These tools support development of native
and portable applications across platforms using a frame-
work called the Component Library for Cross-Platform
(CLX) covering advanced GUI, database and network ac-
cesses. On Delphi, the ActiveX control SCAcom was im-
ported into a custom CLX component called SCAclx[5].
For Kylix, SCAcom required some re-writing (keeping the
same properties and methods) for compiling in gcc instead
of importing SCAcom. With the release of Kylix 3, CLX is
supported in the Borland C++ environments (C++ Builder
6.0 on Windows 2000 and Kylix 3.0 C++ Builder on Red-
hat Linux 8.0) extending the access to SCAclx to C++ ap-
plications.

SCACLX COMPONENT

CLX: Cross Platform Environment

Component Library for Cross-platform (CLX) is a
framework and component library from Borland[6] shared
by its development tools Delphi and C++ Builder on Win-
dows and Kylix on Linux. A C++ program developed on
Windows, as a CLX application in C++ Builder 6.0 can
also be built to run natively on Linux (and visa versa).

∗This work was supported by the Director, Office of Energy Research,
Office of Basic Energy Sciences, Material Sciences Division, U. S. De-
partment of Energy, under Contract No. DE-AC03-76SF00098

These portable programs can also make use of advanced
GUI, database and network accesses routines. By creating
a custom CLX component (SCAclx) for channel access, the
same source code for channel access client programs can be
built to native code for both Redhat Linux and Windows.

Porting SCAcom to SCAclx in C++

The ActiveX control, SCAcom, was built with Visual
C++ 6.0. We took the C++ source code of SCAcom
and modified it to create a CLX component called SCA-
clx by using Borland C++ Builder 6.0 on Windows. Af-
ter confirming its function on Windows, the source code
was moved to Linux and recompiled under Kylix 3.0 C++
Builder. At the platform specific level, SCAclx calls the
same dynamic-link libraries (DLL) that implements the
ActiveX control installed on each Windows machine in the
control room. On Linux, SCAclx calls into a shared-object
libscaclx.a which in turn depends on the channel access and
simple channel access libraries sca.a, ca.a and Com.a. Fig.1
shows these layers. Compared to our previous implementa-
tion of SCAclx in Delphi, the implementation in C++ was
much simpler. In addition to the portability of client pro-
grams, the source of SCAclx itself became portable.

Sca

ActiveX Control

SCA.dll

CA.dll Com.dll

libsca.a

libca.a libCom.a

libscaclx.so

QSCAclx

CLX Component

Windows Linux

Win32 CLX

SCAcom.ocx

Figure 1: SCAclx and Libraries

Functions of SCAclx

The following members functions and properties have
been implemented in SCAclx.

• published property bool GroupCall
• published property bool SetEnabled
• public int Status
• void addInt32Item(AnsiString pvname);
• void addDoubleItem(AnsiString pvname);
• double getDouble(AnsiString pvname);
• int getInt32(AnsiString pvname);
• void setDouble(AnsiString pvname,double value);
• void setInt32(AnsiString pvname,int value);

0-7803-7739-9 ©2003 IEEE 2385

Proceedings of the 2003 Particle Accelerator Conference



The property GroupCall is used to turn on or off the
group access mode that becomes important when many
channels are added. SetEnabled is for the debugging to dis-
able accidental value settings. A data member Status holds
the status of the last EPICS call. The group name is taken
from the component instance name property therefore it is
not included here.

USING SCACLX

Once the newly developed SCAclx component is in-
stalled in both development environments, we can develop
an EPICS client programs as CLX programs taking advan-
tage of the other features with a provided by CLX compo-
nents including GUI, database access and networking. (We
prefer to develop in the Windows environment since Kylix
has more features). The following example was written to
demonstrate application portability. It reads and displays
8 vacuum values. We first developed it on Windows(see
Fig.2) and rebuilt it on Linux (see Fig.3). Fig.4 shows
this application running on Windows and Fig.5 shows it
on Linux.

Figure 2: SCAclx on Windows at Design Time

Figure 3: SCAclx on Linux at Design Time

Figure 4: SCAclx on Windows at Run Time

Figure 5: SCAclx on Linux at Run Time

CONCLUSION

The ActiveX component, SCAcom, has been ported to
as a cross-platform CLX component called SCAclx. This
component can now be used to build native Windows and
Linux C++ programs. Compared with our previous ef-
fort of porting it for the Delphi Pascal, it much simpler in
C++. Without using interpreter languages, we can support
EPICS client program development in C++ on both Win-
dows and Linux without compromising the robustness and
performance

ACKNOWLEDGEMENTS

We express our thanks to A. Biocca and S. James for
their support.

REFERENCES

[1] S. Magyary et al, ”The Advanced Light Source Control Sys-
tem”, NIM A 293 (1990) 36-43, North Holland. S. Magyary,
”Anatomy of a Control System; A System Designerś View”,
IEEE PAC93, 93CH3279-7,1811,1993.

[2] L.R. Dalesio, et al., ”The Experimental Physics and Indus-
trial Control System Architecture”, ICALEPCS ’93, Berlin,
Germany, 1993.

[3] C. Timossi and H. Nishimura, ”Accelerator Control Software
Construction Based On Software Components”, PAC 1997

[4] C. Timossi, www-controls.als.lbl.gov/epics collaboration/
sca/win32/JSca/SCA.JSca.html

[5] C. Timossi, J. McDonald and H. Nishimura, ”Experience
with ActiveX Control for Simple Channel Access”, to be ap-
peared in PCaPAC 2002

[6] http://www.borland.com

[7] J.L.McDonald, H. Nishimura and C. Timossi ”Cross Plat-
form Development Using Delphi and Kylix”, to be appeared
in PCaPAC 2002

2386

Proceedings of the 2003 Particle Accelerator Conference


