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Abstract

Imperfection non-linear resonances can lead to undesir-
able beam loss and thus limit the high-intensity operation.
In the presence of space charge, beam response to such res-
onances is strongly influenced by collective beam dynam-
ics. It is thus crucial to understand the effectiveness of the
non-linear resonance compensation. We explore various
procedures in the resonance correction and suggest some
practical applications. Effectiveness of resonance correc-
tion for the high-intensity operation is discussed.

INTRODUCTION

A single-particle theory of nonlinear resonances and
their correction is well developed. Nonlinear fields cause
tune dependence on amplitude and islands to appear in
the phase-space plots. When crossing the resonance, the
large amplitude particles can be locked into the islands,
moved to large amplitudes, and possibly be lost. Space
charge introduces several aspects into resonance crossing.
When the space-charge tune depression is increased, parti-
cles with the smallest amplitudes reach the resonance first
as they have the largest tune shift. In addition, the space
charge introduces the largest source of nonlinearity which
changes the response to a resonance. For dynamic resonant
response of a beam, the static description via the single-
particle tune shift becomes inaccurate. A dynamic solution
which includes the space-charge force and density redis-
tribution is required [1] . All these aspects of the space
charge raises very important questions: What is the role of
the space charge in resonance crossing? How to account for
the space-charge nonlinearity in resonance correction? Can
one have a good correction of the resonances for the high-
intensity operation? In an attempt to answer these question,
we performed a systematic study of resonance correction
issues for the high-intensity operation of the SNS ring, us-
ing the DYNA [2] and UAL [3] codes.

RESONANCE CORRECTION

The single-particle resonance condition is

nxQx + nyQy = p, (1)

where nx, ny , p are the integers, with p being the driving
harmonic. In the presence of the space charge it is slightly
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modified [1]. In this paper we use the single-particle ter-
minology but also make an analogy with the collective dy-
namics. A linear stopband can be written as

∆ε =| κ | JN/2x JN/2y
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where Jx, Jy are actions, and N =| nx | + | ny | is the
resonance order. The excitation strength κ is
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where ψ = nx(µx−Qxθ)+ny(µy−Qyθ)+pθ, andK(θ)
is related to the error field multipoles.

One way of correction is to minimize κ, using Eq. 3. Al-
though this can be done in simulation when the field errors
are known, in real life problems arise from the source of er-
rors which are unknown. The measurement of the stopband
has some difficulties. First, by crossing the resonance, one
can measure accurately only a symmetric stopband. If there
is a source of the nonlinearity, the stopband becomes asym-
metric, and the loss is different depending on the direction
of the resonance crossing. More importantly, the loss ob-
served, for example, on a current monitor depends not just
on the resonance strength but on the beam-pipe character-
istics as well. In that sense, the measurement via the stop-
band is indirect and does not provide a desired accuracy.

Another way of correction is to measure the islands of
the nonlinear resonance. The island width, to first order, is

∆J ∼
√
κ

α
J
N/4
0 , (4)

where α describes tune change at the island center, J0

is action at the island center. Measurement of the island
width gives a more direct information about the resonance
strength since it is independent from losses on the beam
pipe. Of course, one needs to answer the question what is
the role of the nonlinearity α in such a measurement, espe-
cially when it will dynamically change and become large
due to the space charge in the process of accumulation. A
systematic study of this question was performed and find-
ing are summarized below.

An accurate way to obtain information about the island
width, is to perform tune (Q) vs amplitude (A) scan near
the resonance of interest. The flat region in tune values
on the Q vs A diagram gives information about the width
of the island [4]. The resonance is corrected by minimizing
this flat region to zero. Such a method requires a significant
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Figure 1: w.p.(6.36,6.22),N = 0.6 ·1014: sextupole errors,
no correction-red (long-dash) line; correction of 3Qx =
19-green (short-dash) line; no errors-blue (solid) line.

amount of time due to a required amplitude scanning. An
alternative way to get similar information quickly is to kick
the beam into the islands and measure the corresponding
frequency spectrum. When some portion of the beam is
locked into the island, one obtains the corresponding peak
with the tune measurement device. The correction knobs
are used to adjust the amplitude of the peak in the spectrum
to zero. Such a method was recently applied for correction
of nonlinear resonances at RHIC [5]. In simulations, we
use the Q vs A method to find the best strength for the
correctors and compare it with the stopband compensation.
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Figure 2: w.p. (6.36,6.22), N = 2 · 1014: sextupole er-
rors without correction - red (long-dash) line; correction of
3Qx = 19-green (short-dash); correction of 3Qx = 19,
2Qy −Qx = 6 resonances - pink; no errors - blue (solid).

APPLICATION TO THE SNS

First, the strength of correctors are found for a zero space
charge using the DYNA code. The nonlinearity due to the
quadrupole fringe fields generate islands of a finite width.
It was also found that the magnitude of the nonlinearity is
not important, and that correction works nicely even for
dynamic increase of the strength of the nonlinearity due to
the space charge. The corresponding correctors were then

used in the UAL to simulate a dynamic accumulation pro-
cess with and without the resonance correction. Various
aspects of correction were studied using the sextupole res-
onances. The studies were then extended to include the 4th
order resonances. Here, we present the studies based on a
lumped source of errors, where randomly distributed errors
were lumped into a single magnet. Also, for the studies of
the sextupole resonances, the strength of errors was taken
5 times bigger than currently measured while for the oc-
tupole resonances - 10 times bigger. A larger strength of
errors was required in order to see an appreciable emittance
growth during the accumulation cycle.

Correction of 3rd order resonances

With only the sextupole errors being introduced, Fig. 1
shows the beam halo at the end of accumulation for the w.p.
(6.36, 6.22) and intensity N = 0.6 · 1014 protons. With-
out correction, the loss due to the 3Qx = 19 resonances is
about 2% at the acceptance of 240 π [mm mrad]. When the
resonance is corrected (with two correctors at large βx), the
loss goes to zero at this acceptance. The intensity is then
further increased to 2 · 1014 and the loss increases to 1.6%
(shown in Fig. 2). This is due to the next sextupole res-
onance 2Qy − Qx = 6, crossed at higher intensity. We
now use two other correctors at large βy to correct this res-
onance. The corresponding loss with correction of both
resonances decreases to 0.5%. Note, that although a good
correction of p = 6 harmonic was possible in simulation,
it will not be that good in practice, since the present loca-
tion of the sextupole correctors in the SNS provides good
correction only for the odd harmonics. As a result, use of
other magnets with a proper phase advance (like some of
chromatic sextupoles) will be needed for compensation of
the resonances due to the sixth harmonic.

The fact that present location of correctors in the SNS
allows a good control over the odd harmonics tempted us
to explore how far in intensity we can actually go with
the resonance correction, choosing, for example, the w.p.
(6.4,6.3). All the working points used here, of course,
should be understood as an approximate. In real life, one
would be unlikely to tune the lattice exactly to a sum res-
onance. However, the space charge pushes the tunes away
from this resonance, and a good correction is possible, as
shown in simulations. Figure 3 demonstrates correction of
Qx + 2Qy = 19 and 3Qx = 19 resonances, using two
different sets of correctors. The pink (dotted) curve cor-
responds to N = 3 · 1014 and black (upper solid) curve
corresponds to 4 · 1014 with both corrections being ap-
plied. Adjusting the location of primary scraper, we can
attempt to push intensity to almost 4 · 1014 with relatively
low losses, which was speculated before by constructing
the loss curves without resonance correction [6].

Simultaneous correction of various resonances

The studies were extended to include the normal and
skew octupole resonances, although the SNS does not have
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Figure 3: w.p. (6.4,6.3): N = 2 · 1014, no correction - red
(long-dash line); correction of 3Qx = 19 and Qx+2Qy =
19 resonances: 2 · 1014-green (short-dash), 3 · 1014-pink
(dotted line), 4 · 1014-black (upper solid line).

skew-octupole correctors at the present moment. In all the
cases, we were able to achieve a good correction results.
For example, Fig. 4 shows high-intensity loss for the w.p.
(6.36,6.22), with both sextupole and octupole errors, and
correction of 3rd and 4th order resonances.
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Figure 4: w.p. (6.36,6.22), N = 2 · 1014: no errors-blue
(solid line); octupole and sextupole errors, no correction-
red (long-dash line); correction of 3Qx = 19, 2Qy−Qx =
6, and 2Qx + 2Qy = 25 resonances-green (short-dash).

Figure 5 shows the tune space with all the 3rd and 4th or-
der resonances which require correction for the two work-
ing points being considered. We were able to achieve very
good correction with a loss at the primary scraper of about
5 · 10−3. Even though, the loss is still higher than the one
without resonance excitation, it should be possible to reach
the uncontrolled beam loss of desired level by adjusting the
aperture of the primary scraper.

SELF CONSISTENT DESCRIPTION

Although we used the terminology of a single-particle
dynamics, the same description can be given using a self-
consistent approach of collective dynamics. It provides a
physical picture of dynamics process, including the growth
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Figure 5: Tune-space with 3rd and 4th order resonances
need for correction of w.p. considered.

of emittance and adiabatic increase of losses when intensity
is slowly increased [1]. It also explains why the strength of
the nonlinearity is not important in the resonance correc-
tion. This is because the nonlinearity determines the maxi-
mum amplitude of period-p oscillations of the correspond-
ing collective mode (fixed point of an island), while the
width of the resonance, in first order, is determined just by
the resonance strength κ. As a result, if one manages to
measure and correct the stopband of the resonance with a
good accuracy experimentally, such a correction will give
results as good as the island correction. This was confirmed
in present simulations with good correction being achieved,
using both the stopband and island correction methods.

SUMMARY

Correction of the nonlinear resonances with application
to high-intensity operation was studied. Our findings sug-
gest that it should be possible to correct resonances with a
good accuracy and thus control beam loss at a low level.
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