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Abstract also known as the "envelope instability” [4]. As one can
e from Eg. 2, the envelope instability limits the allow-

le tune space to onl§.25 and thus may have an ad-
ional impact on the performance of high-intensity ma-

The space-charge limit is imposed by beam respon§
to low-order machine resonances. Here, the coherent re-

sponse of the beam to such resonances is discussed, ﬁin It is therefore extremely important to understand
cluding the parametric resonance of collective beam mod €s. 1L 1s therelore exiremely Important fo understa
when such envelope instability should be taken into ac-

with the periodic lattice, also known as the "envelope insta- nt and whether it can alter th harae limit aov
bility”, when the second-order beam modes are considered - ether 1t can after the space-charge g0

The relation of this parametric resonance to the coherefs n_edthby dEf? L. Ths rt)vr\;maryzhgoal r?f th'? _p?per 1S tg r?xl-f
resonance condition of an integer type is explained. Pracfi-an the difierence between the conerent integer and hafl-

cal application of such resonant responses to both structu H:S?(r)recngr?sl? dpeerart(ia;ril)cc))??ﬁ: ::\?elgrc:awiiit;tr)ﬁi? t'ci:ﬁlri?]u'ge'
and imperfection driven harmonics is addressed. . P Y gs-
For completeness, we also discuss coherent resonances for

high-order beam modes.

INTRODUCTION

When choosing the operating point in the tune space, GENERAL ANALYSIS
one carefully avoids resonances driven by the lattice peri- . .
odicity (structure resonances). However, unavoidable pre _We start with the_n = 2 modes, allowing us to employ
ence of errors in the magnetic field sets restrictions assﬁle envelope equation:
ciated with the imperfection resonances. As a result, the 2
condition that the individual particle tune should not be a’"+ K(s)a— — — — =0, (3)
depressed by the space charge to integer or half-integer
values is known as the space-charge limit. We note thathereK (s) is the periodic focusing function,is the beam
such a definition of the space charge limit is different fronemittance,x is the space charge parameter, ani$ the
the one used in a special class of circular machines (feadius of a round beam. For simplicity, we replace the
example, in cooler rings) where additional efforts are unperiodic focusing by a time-dependent perturbation. The
dertaken to compensate for emittance growth. The maxinearized envelope equation for small oscillatigns—
mum achievable intensity associated with crossing of the)(1 + u)] is then
integer or half-integer tunes was first formulated using the
single-particle approach. Subsequently, a more accuratg” + Q2u + (nt) = (14u)vg ZO‘” cos(nf) + (nt), (4)
treatment of collective beam dynamics gave better under- n
standing of the beam response to such resonances [1]-[2].

Such a coherent resonance condition, corresponding to tE( erent s}ands for 'jnoElmear terPs”.-lf(;hefcoeff.lmermg

half-integer single-particle resonance (n/2 = where PECOMES lalge, as In the case of periodic focusing, & more

v = vy — Av,, andy, is the zero-current tune), is accurate treatment of the stationary state is required [5]. In
- sc )

Eq. 4, the term which drives matched periodic oscillation of
n=1Q =2vy — Al 4, (1)  the beam envelope and the term which describes the oscil-

whereQ, is the frequency of the 2nd order coherent oslations around such a periodic solution are both kept on the

cillation mode of the beam. The coherent resonance copf-S- for comparison. In principle, these two terms should
dition in Eq. 1 was first derived using an approximatiorpe treated separately, since the first term is just the closed
of smooth focusing. Subsequently, it was shown that A@rbit solution (matched solution in the presence of a time
focusing can lead to an additional subset of collective ifi€Pendent perturbation). However, when only the second
stabilities [3]. Such an instability due to the lattice period-term is kept, as typically done to consider beam stability as

icity, corresponds to a coherent resonance of the parametfid€Sult of periodic focusing, an important implication of
(half-integer) type: the first term may be overlooked. In particular, the resonant

growth of such stationary solutions near the half-integer

n/2 =, (2)  tunes, due to the first term, becomes an important effect,
“Work supported by the SNS through UT-Battelle, LLC, under conknown as Smith/Sacherer space-charge induced coherent
tract DE-AC05-000R22725 for the U.S. Department of Energy. beam response to the imperfection resonances. Here, the
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resonant response is considered both for the case when the 2 ; 4941
integer and half-integer coherent response occurs at differ- qé ]
ent tunes, as well as when the driving harmonics provide a 2 1.0002
resonance condition for both resonances at the same tune. g ] |
The first term on the r.h.s. of Eq. 4 corresponds to an g 1.00004 |
integer()s = ny coherent resonance of the beam enve- ﬁ o_ggggf
lope with harmonie,, which occurs near the half-integer s 1
single-particle tunes. The second term onthe r.h.s. of Eq. 4 & 0.9996
gives the coherent resonance of the half-integer (paramet- DR
6.15 6.2 6.25 6.3 6.35

ric) type: Qs = no/2, wherens is now another harmonic
different fromn;. The limitation due to this linear para-
metric resonance of the envelope modes with the periodic
focusing structure suggests a design with the zero-currdnigure 1: Growth factors for imperfection driven envelope
single-particle phase advanegper focusing period below instability with working pointuy,,, = 6.333 and a large
90°. In rings, such a condition corresponds to the struc@or of 4%in harmonicn = 25.

ture resonance which occurs near the single-particle tunes

v = N/4 with N being the structure harmonic. However,envelope growth at such tune values with the stationary so-
the structure resonances are typically avoided by the choiggion for periodic oscillations of the beam envelopes being
of the operating tune-box resulting in the limitation duewell defined. When one approaches the integer or half-
the imperfection resonances. Note that in a special clafeger tunes, this results in a periodic growth of the beam
of rings (such as cooler rings), where additional measuregelopes which is described by the coherent integer re-
are undertaken to compensate emittance growth due to tgonse in Eq. 1. At such tunes there is also the possibility
crossing of the imperfection resonances, one recovers tbgparametric growth of the envelopes due to higher har-

tune

situation as in linear transport systems. monics. For the parametric resonance to take place at such
tunes, the stopband of the parametric resonance (due to the
Resonance strength am,) should be much larger than the integer stopband due

to thea,,,. For example, in the PSR LANL lattice with
the zero-current betatron tune abave= 2.5, the para-
metric resonance of the beam envelope would take place
at high-intensity operation. This is because the strength of

— 0y,
2Q 2v2/1 + n?
. then = 10 harmonic («g) is much larger than that of the
where, as an example, we substituted(iothe frequency n = 5 () harmonic, since: — 5 is a weak imperfection

of the in-phase mode, with being the tune depression de-p 5 gnic whilen — 10 is the strongest harmonic with the

fined asn = v/vy. It depends linearly on the strength Oflattice super-periodicity = 10 [8].

the imperfection errody,, (to first order). Such a strength is

very small for typical imperfection errors (m_uch less tharEXtenSi on to non-linear modes

the 1% level). As a result, the corresponding resonance

is expected to be very narrow and the envelope growth is For the case of the non-linear imperfection errors one

detuned at a very low level due to the non-linear terms ihas to consider tune values near the corresponding imper-

Eg. 4, which was confirmed by numerical simulation [6]fection resonances. Similar to the = 2 modes, the high-

This is, in fact, the reason why the effect of the enveloperder modes can have resonant growth near

instability in rings is negligible, provided that the tune-box

is chosen free of the structure resonances and only imper- n = {m, ©)

fection harmonics are of a concern. which is the coherent resonance condition for any order
On the contrary, when the source of the parametric driseam mode?,,, derived by Sacherer [2]. To derive such

ing term in Eq. 4 is due to the periodicity of the lattice, thes resonance condition forn. > 2 modes one needs to use

width of the resonance may become significant. Stricthgither high-order beam moment equations or the Viasov

speaking, a perturbation approach is not applicable for vegguation. In addition, the effect of the periodic focus-

largea,,, and one needs to solve the exact equation with pgrg adds the possibility of,, resonating at the half-

riodic focusing numerically. This defines the stopbands ghtegers, which corresponds the parametric resonance of
the structure resonances which should be avoided. beam modes [7]:

The width of the linear parametric resonance is [5]:

2 2
v, v,
Ae~ -Lq, = 9

(%)

_ n/2= Q. @)
Combined resonance response The practical discussion for the typical strength of an im-
If the zero-current tune is chosen in the tune-box freperfection error is now similar to the discussion for the
from the structure resonances then the effect of the parar = 2 modes [5].
metric envelope resonance due to the imperfection harmon-For completeness, we note that in the absence of non-
ics atl/4 tunes is negligible. Also, there is no integer-typdinear imperfections, the periodic oscillation of high-order
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beam modes is now well defined so that the condition 1.104

n = Q,, no longer applies, and stability is now determined .2 ] /\

solely by the parametric conditiow/2 = Q,, [7]. In fact, g 1.05

this becomes the dominant effect in the high-current trans- E ] / \

port channel or cooler rings. With harmornicnow being i 1.00

the structure harmonic, the beam encounters a whole set of 1 \ /

instabilities during the space-charge tune depression. Such £ .95

instabilities were first numerically explored in connection % ] \/

with transport channels [3], and recently were analytically 0901 — -
described using the terminology of resonances with an ap- 70 80 90 100

plication to cooler rings [7].
When the beam has a large mismatch, the nonlinear

terms ignored in the linearized approach can play an im-

portant role. In such a very general case, the condition f(ﬁjgu_rg 2: .Growth factors for structure driven en\éelope In-
the non-linear parametric resonance is [5]: stability with zero-current phase advancergf= 96", cor-

responding ta/, , = 6.4.

phase advance per cell

n/k = Qm, 8

wherek now stands for the exponent of the non-linear terrréiﬁéﬁt) vggr;eaag\r/zvr\:toliagéoé Etzggfreusn'tg/n;'iﬁrtfofgrujlrj]!

in the driving potential. This is similar to the non-linear P : P g

envelope resonances’k — Q, when the beam envelopes Vzy = 5.92). The str_ong flutter of the matched FQDO en-
velope couples the in-phase and out-of-phase eigenmodes

are mismatched [9]. Also note that in such a form, the res- . . :
and leads to a single stopband. In a realistic lattice one

onance condition applies also for the coupling resonances, : .
: : L ries to avoid structure resonances by choosing the work-
since the subscript only indicates the order of the mode.. . )
ing point correspondingly.

NUMERICAL ANALYSIS SUMMARY

Imperfection envel ope instability We examined the impact of integer and half-integer res-

We used the KVXYG [4] code, which determines thednances of the c;ollectiye peam modgs on intensity Ii_mita—
growth factors of the envelope perturbations. A paramefion in the high-intensity rings. The imperfection driven
fic resonance of the beam envelope may be expected fionance of the beam envelopes was found to be negligi-
a lattice with a working point abové/4 tunes. We have ble. _As_ a r_esult, it is not expected to impose an additional
taken a constant focusing lattice with, , = 6.333 and a restriction in the tune space.
25-th harmonic gradient error, which implies = 91.2°
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