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Abstract 
 In general, the temperature of a charged particle beam 

travelling in an accelerator is very high. Seen from the 
rest frame of the beam, individual particles randomly 
oscillate about the reference orbit at high speed. This 
internal kinetic energy can, however, be removed by 
introducing dissipative interactions into the system. As a 
dissipative process advances, the beam becomes denser in 
phase space or, equivalently, the emittance is more 
diminished. Ideally, it is possible to reach a “zero-
emittance” state where the beam is Coulomb crystallized. 
The space-charge repulsion of a crystalline beam just 
balances the external restoring force provided by artificial 
electromagnetic elements. This paper briefly reviews the 
dynamics of coasting and bunched crystalline beams 
circulating in a storage ring. Results of molecular 
dynamics simulations are presented to demonstrate the 
nature of various crystalline states. A practical method to 
approach such an ultimate state of matter is also discussed. 

INTRODUCTION 
Consider a dynamical system consisting of many 

identical particles of mass m. The average kinetic energy 

is given by 
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X  stands for taking the 

average of the quantity X over the whole phase space. T is 
commonly referred to as the temperature of the system. 
When the center of mass is moving at a certain speed, we 
define the temperature in the rest frame, subtracting the 
contribution from the centroid motion. Even after such 
subtraction, we find that the temperature of a charged-
particle beam propagating in a typical accelerator is still 
quite high due to the betatron and/or synchrotron 
oscillations driven by external electromagnetic forces. 
This means that most beams naturally have rather large 
energy spread in all three degrees of freedom. A question 
is how much this thermal motion can be suppressed in 
principle. 

In order to reduce the beam temperature or, in other 
words, to improve the beam quality, we have to introduce 
some dissipation into the system. Suppose that a 
sufficiently strong dissipative force is available. Then, is 
it possible to realize a completely “frozen” state in which 
  T = 0 ? If the beam focusing force is uniform along the 
reference orbit, the answer is yes; a frozen beam can be 
generated, at least, in theory. At   T 0 , all particles are 
fixed at specific coordinates and never move in the rest 
frame. Schiffer and co-workers numerically studied such 
an ideal system, employing the molecular dynamics (MD) 
approach [1]. Particles forming a frozen beam are 

spatially ordered, so that the internal Coulomb repulsion 
exactly balances the external artificial force. It is, 
however, not obvious whether an analogous crystallized 
state can be established in an actual accelerator where the 
beam is exposed to nonuniform focusing forces. This 
important subject was examined by Wei, Li and Sessler 
who incorporated complex lattice structures into MD 
simulations [2]. They showed that it is still possible to 
form various ordered configuration, although T is now 
non-zero unlike uniform focusing situations. As we can 
easily understand, any beam must execute a breathing 
motion owing to the discrete nature of a modern strong 
focusing lattice [3]. It is thus only approximately feasible 
to produce a frozen beam in reality.  

CRYSTALLINE BEAMS 
Hasse and Schiffer have theoretically investigated the 

structural transition of infinitely long Coulomb crystals, 
assuming the time-independent linear potential for 
particle confinement [4]. According to their analysis, the 
spatial configuration of a crystal can be determined by the 
dimensionless parameter 
 

 
= Na

WS
                                  (1) 

 
where N is the number of particles per unit length, and aWS 
is the Wigner-Seitz radius. At very low line density, a 
string crystalline structure is formed; namely, all particles 
are exactly on axis at the same intervals (see the upper 
panels in Fig. 1). By increasing the line density, we can 
transform a string into a two-dimensional (2D) zigzag 
crystal as depicted in the middle panels in Fig. 1. The 
density threshold of the string-to-zigzag transition is 
given by  = 0.709 . At higher density, a three-
dimensional (3D) shell crystal can be attained (the lower 
panels in Fig. 1). Table 1 lists the transition density 
predicted in Ref. [4]. Although this theoretical prediction 
is based on the harmonic potential model, it 
approximately explains the actual transition of crystalline 
structures exposed to a strong focusing force. 
 

Table 1: Structures of Coulomb crystals [4] 

Density Crystal Structure 

0 <  < 0.709 String (1D) 

0.709 <  < 0.964 Zigzag (2D) 

0.964 <  < 3.10 Single shell (3D) 

3.10 <  < 5.7 Single shell + String (3D) 

5.7 <  < 9.5 Double shells (3D) 
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Figure 1: Real-space configurations of typical coasting 
crystalline beams. These results are obtained from MD 
simulations in which the lattice of the cooler storage ring 
S-LSR has been assumed [5]. The horizontal and vertical 
bare betatron phase advances per lattice period have been 
both set at 86.4 degrees in all three examples. Each dot 

( • ) in the pictures corresponds to a single 
 
24

Mg
+  ion 

circulating in S-LSR at the kinetic energy of 35 keV. The 
symbols (x, y, z) represent, respectively, the horizontal, 
vertical and longitudinal spatial coordinates in the beam 
rest frame. The ordered structures are stable without the 
cooling force. 
 

Coulomb crystalline states similar to the numerical 
examples in Fig. 1 have already been realized in many ion 
traps around the world by using the laser cooling 
technique [6-8]. This advanced technique is currently the 
only means for us to make Coulomb crystals because of 
its high damping rate and very low limiting temperature. 
Considering a physical analogy between a Paul trap and a 
linear beam transport channel [9], it should theoretically 
be possible to crystallize even a fast ion beam if its orbit 
is linear. Laser cooling is, however, applied only to a 
circulating beam in a storage ring, such that the ions 
interact with laser photons in one or more straight 
sections every turn [10,11]. This technical requirement for 
extending the effective cooling region has been known to 
cause a serious trouble. As discussed later, bending 
magnets peculiar to a circular machine plays a crucial role 
in crystalline states. 

The lattice of a storage ring aiming at beam 
crystallization must satisfy a couple of conditions [2,12]. 
First of all, in order to form an ordered structure, the ring 
has to operate below the transition energy 

 T
: 
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where  is the energy of the reference particle. Secondly, 
the following condition is required to maintain a 
crystalline beam: 
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where x and y are horizontal and vertical betatron tunes, 
and Nsp is the lattice superperiodicity of the ring. 
According to a recent understanding, this second 
condition is necessary but not sufficient from a practical 
point of view [13]. 

SINGLE-PARTCLE ORBIT 
In a coasting crystalline beam as displayed in Fig. 1, the 

trajectories of all particles are proportional to each other 
[14]. The transverse motion of any single particle in the 
beam can be expressed, with universal orbit functions Dx 
and Dy, as 
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where 

  
C

x( y )
 is a sort of scaling constant that depends on 

which particle we see. It has been shown that Cx is 
equivalent to the momentum deviation 

  
p / p  of each 

particle. For reference, we plot, in Fig. 2(a), the orbits of 
three particles arbitrarily selected from the 3D crystalline 
beam in Fig. 1. These periodic oscillations driven by the 
alternating gradient lattice make the crystal temperature 
finite. In the present case, the average kinetic energy of 
the breathing motion is a few Kelvin much higher than 
the Doppler cooling limit. This value becomes greater and 
greater as the number of shells increases at higher line 
density. Scaling the three orbits properly, we obtain Fig. 
2(b) that clearly demonstrates the validity of Eq. (4). 

In order to predict the universal orbit, let us demand 

that Cx
2

= Cy
2 . We can then derive the coupled 

differential equations as follows [14]: 
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where Kx and Ky are the beam focusing functions 
determined by the lattice design, the -parameter is 

defined by 
  

= K
sc

/ ( p / p)2  with Ksc being the beam 

perveance,  is the curvature of the reference orbit, and 
the independent variable s is the path length. We have 
verified that the periodic solutions to Eqs. (5) completely 
agree with the scaled orbits in Fig. 2(b). It is worthy to 
recognize that Eqs. (5) approach the well-known envelope 
equations of a “zero-emittance” beam in a linear channel 
when . 

The horizontal (vertical) emittance is usually defined as 
the area occupied by the beam in x-  x  (y-

 
y ) phase 
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space, where   x dx / ds  (
  
y dy / ds ). Equations (4) 

indicate that all particles have the same   x / x  and 
  
y / y  

at any location of the ring, which implies that the phase-
space distribution is always a straight line as shown in Fig. 
3. The transverse emittance of a crystalline beam is, 
therefore, zero regardless of its configuration in real space. 
This is true no matter whether the crystal is continuous or 
bunched. We can thus state that crystalline beams have 
the highest quality physically realizable. 
 

 
Figure 2: Transverse orbits of particles in a crystalline 
state at S-LSR. The trajectories over only a single lattice 
period have been plotted. Since the S-LSR ring has six-
fold symmetry, the identical pattern repeats six times 

every turn. (a): Actual orbits of three 
 
24

Mg
+  ions 

extracted from the shell crystalline beam in Fig. 1. (b): 
Scaled orbits obtained from the data in the upper pictures. 
All scaled curves have almost completely overlapped. 
 

 
Figure 3: Phase space configuration of the double-shell 
crystalline beam in Fig. 1. The linear distribution is 
maintained all around the storage ring, although the tilt 
angle changes periodically according to the function 

  
(dD

x( y )
/ ds) / D

x( y )
. If the focusing force is uniform along 

the orbit, all particles are aligned on the x = 0  axis (thus, 
  T = 0 ) and never move. 

OBSTACLES TO BEAM 
CRYSTALIZATION 

Heating Sources 
Even if the two necessary conditions in Eqs. (2) and (3) 

are satisfied, crystallizing a beam is not always possible 
in practice. There are additional undesirable factors that 
can seriously affect a cooling process toward 
crystallization. First of all, intrabeam scattering starts to 
dominate the beam as the emittance is more diminished. 
If the cooling efficiency is too low, the beam will settle 
into a sort of equilibrium at rather high temperature 
determined by the balance between the internal heating 
and external damping forces. We expect that the heating 
rate comes to a peak in the liquid phase where the average 
Coulomb potential is on the same order as the average 
kinetic energy 

 
k

B
T . Once the beam goes beyond the peak, 

the heating due to random Coulomb collisions becomes 
less dangerous and eventually disappears in a perfect 
crystalline state. The cooling force must, therefore, be 
strong enough to overcome the heating-rate mountain. 
Note that this effect does not take place in a spatially 
uniform lattice. 

Another critical effect that may limit the achievable 
beam emittance is the so-called coherent resonance. 
Equation (3) can actually be interpreted as the sufficient 
condition to avoid the occurrence of the linear coherent 
resonance at the space-charge limit. This suggests that we 
should be careful in applying Eq. (3) because ordinary 
beams are far from space-charge limit before cooling. At 
high temperature, we find that the betatron phase advance 
per single focusing period must be below / 2  (rather 

than / 2 ) to suppress the linear collective resonance 
[15-17]; whenever the phase advance per lattice period 
exceeds 90 degrees, the beam will encounter a severe 
resonance stopband before an ordered state is reached. 
Recent particle-in-cell simulations have revealed that high 
line-density beams cannot cross a linear resonance 
stopband even under the influence of a strong cooling 
force [13]. Once the lowest-order resonance is excited, 
the coherent tune of the beam is locked around a certain 
value and no further cooling becomes achievable. A 
similar phenomenon has been observed experimentally in 
a European storage ring [18]. We thus conclude that an 
ultralow-emittance state cannot generally be reached with 
a realistic cooling force unless the ring satisfies 
 

  
max(

x
,

y
) <

N
sp

4
.                           (6) 

 
Similarly to the collisional heating, we do not have to care 
about this instability provided that the external driving 
force is uniform. 

Notice that the condition (6) can be met only 
approximately. Strictly speaking, the superperiodicity of 
any storage ring is unity because of error fields and 
various insertion elements. An important question arises 
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then; namely, what degree of symmetry breakdown is 
acceptable in attaining a crystalline beam? Sensitivity 
studies have pointed out that magnetic imperfection at 
less than 0.1% level can be tolerated [19]. Resonances 
induced by error fields are, therefore, not so severe as 
long as dipole and quadrupole magnets are well 
constructed and well aligned. On the other hand, attention 
must be paid to the fact that we usually cool a beam in 
only one or two straight sections. This leads to additional 
symmetry breakdown of external forces felt by the beam. 
We have confirmed that 1D and 2D crystalline beams are 
relatively insensitive to how many times they go through 
cooling sections every turn. By contrast, it seems almost 
hopeless to ensure the stability of a multi-shell crystalline 
beam when the number of cooling sections is unequal to 
Nsp. This heating mechanism is in connection with the 
dispersive nature of a storage ring. 

Dispersive Effects 
So far, nobody has succeeded in accomplishing 

Coulomb crystallization of a fast ion beam in a storage 
ring. There are several primary reasons for that. Firstly, 
laser cooling is inefficient in damping the transverse 
betatron oscillations of fast stored ions. Secondly, a 
storage ring is much more complex than compact ion 
traps. Magnetic field imperfections and other noise 
sources are inevitable which may give rise to beam 
heating. Thirdly, the effects of momentum dispersion 
caused by bending magnets are present in a ring. This 
third factor is the most problematic and has made beam 
crystallization extremely difficult to achieve in practice.  

The problem is, in one word, that dipole fields couple 
the transverse and longitudinal motions of particles. The 
path length of each particle depends on the horizontal 
coordinate x in a crystalline state whenever the beam orbit 
is closed; a radially outer particle at larger x has to travel 
a longer distance than inner particles every turn. In the 
meanwhile, all particles have an identical revolution 
frequency in order for the ordered configuration to be 
maintained. The average longitudinal velocities must, 
therefore, be different depending on their horizontal 
positions. A regular cooling force is designed to simply 
equalize the longitudinal momenta of stored particles, 
which is not appropriate for the dispersive character of a 
crystalline beam. In order to stabilize a crystalline 
structure, we need to develop a “tapered” force 
represented as [12, 20] 
 

p

p
= fs

p

p
Cxz

x

0

,                 (7) 

 
where the left hand side denotes the change in p / p  

before and after the cooling section, 0  is the curvature 

in the bending regions, fs corresponds to the strength of 
the damping force, and Cxz is called the tapering factor 
determined by the lattice design. Tapered cooling is 
essential to form a circulating crystalline beam with a 

finite horizontal extent. Such a special force becomes 
unnecessary only in a dispersion-free system. A possible 
scheme to eliminate dispersive effects has recently been 
proposed in Ref. [21]. 

Once we switch on a radio-frequency (rf) cavity in a 
storage ring, a crystalline beam comes to show even more 
unique behavior that can never be reproduced in an ion 
trap [22]. Since the rf field accelerates or decelerates 
particles, the transverse motion of a crystalline beam is 
influenced by the energy modulation through the 
dispersive coupling from bending magnets. Then, even a 
string crystal can no longer stay on the reference orbit but 
horizontally oscillates about it [23]. Figure 4 is a typical 
bunched Coulomb chain in a storage ring. Any bunched 
crystalline beams are forced to execute analogous 
dispersive oscillations depending on several machine 
parameters. The stability property of crystalline beams in 
a storage ring is thus much more complicated than that of 
regular Coulomb crystals in a linear ion trap. The ring-
shaped Paul trap system “PALLAS” developed by a 
German group may enable us to make a systematic study 
of these important subjects on beam crystallization [24]. 
 

 
Figure 4: Example of a bunched string crystalline beam in 
the storage ring S-LSR. The top views observed at two 
different locations of the ring have been shown.  The bare 
synchrotron tune assumed here is 0.07. 

3D LASER COOLING 
We are now in a position to discuss the experimental 

feasibility of beam crystallization. Since it is not difficult 
to construct a machine that simultaneously fulfills the 
conditions (2) and (6), the most essential issue is how to 
develop a proper 3D cooling force. For this purpose, we 
here consider the application of the resonant coupling 
method (RCM) to laser cooling [25,26]. The dissipative 
force provided by a laser light is known to operate only in 
the longitudinal direction. RCM is employed to extend 
this powerful 1D cooling force to the transverse degrees 
of freedom quite easily. All we have to do is simply the 
excitation of linear coupling resonances. In order to 
examine how much can be done with laser cooling, we 
carried out advanced MD simulations in which realistic 
photon-ion interactions can be incorporated [27]. Figure 5 
shows MD results where two counter-propagating lasers 
have been used to cool a 24Mg+  beam in S-LSR. As the 

transverse tunes have been set at ( x , y ) = (2.067, 1.073) , 

we can excite linear synchro-betatron resonances by 
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adjusting the longitudinal tune s to around 0.07. The 
coupling sources are a solenoid magnet and momentum 
dispersion at the location of an rf cavity [26]. In Fig. 5(a) 
where the operating point is far from synchro-betatron 
resonances, no transverse cooling has occurred as 
expected. By contrast, a dramatic 3D cooling effect can 
be seen in Fig. 5(b) where s = 0.07 . The effective 

cooling time is only about 200 msec and the normalized 
root-mean-squared (rms) emittances have finally reached 

to the order of  10
12

m rad  in all three directions. In this 
example, we have assumed a very low line density at 
which the formation of a 1D string is anticipated. We 
have actually confirmed that, after a laser scanning 
completed at the 60000th turn, ions in each rf bucket are 
arranged into a linear chain analogous to that in Fig. 4. It 
is also possible to construct an approximate zigzag 
configuration in the same way. On the other hand, it 
seems unfeasible to generate a 3D crystalline beam with 
conventional cooling methods because of the reasons 
outlined in the last section. In fact, we have not observed 
the formation of a clear shell configuration in MD 
simulations as long as a realistic cooling procedure is 
taken into account [28]. 

 
Figure 5: Time evolution of normalized rms emittances of 
a 24Mg+  beam cooled with two-counter-propagating 

lasers in S-LSR. The kinetic energy of the beam is 35 keV. 
The upper picture shows an off-resonance case while, in 
the lower picture, linear coupling resonances have been 
excited among the three degrees of freedom. For more 
information about these MD simulations, see Ref. [27]. 

SUMMARY 
In theory, it is possible to realize a Coulomb 

crystallized state where the beam is nearly frozen and the 
emittance is equal to zero. In practice, however, the 
production of a crystalline beam is extremely difficult due 
to some limitations in available accelerator technologies. 
Since cooling is generally executed in a circular machine, 

the existence of dipole fields yields a serious dynamical 
complication in the beam behavior. We have currently 
concluded, on the basis of a number of MD simulations, 
that only 1D and 2D crystalline beams may be attainable 
with existing technologies. In order to accomplish a 3D 
crystalline state, we must somehow counteract the 
dispersive heating. 
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