
H5PART: A PORTABLE HIGH PERFORMANCE PARALLEL DATA
INTERFACE FOR PARTICLE SIMULATIONS∗

A. Adelmann, PSI, Villigen, Switzerland
R.D. Ryne, LBNL/AFR, Berkeley, California, USA

J.M. Shalf, C.Siegerist, LBNL/NERSC, Berkeley, California, USA

Abstract

The very largest parallel particle simulations, for prob-
lems involving six dimensional phase space, generate vast
quantities of data. It is desirable to store such enormous
datasets efficiently and also to share data effortlessly be-
tween data analysis tools such as PartView [1] and exten-
sions to AVS/Express among other groups who are work-
ing on particle-based accelerator simulations. We define a
very simple file schema built on top of HDF5 [2] (Hierar-
chical Data Format version 5) as well as an API that simpli-
fies the reading/writing of the data to the HDF5 file format.
HDF5 offers a self-describing machine-independent binary
file format that supports scalable parallel I/O performance
for MPI codes on computer systems ranging from laptops
to supercomputers. The sample H5Part API is available for
C, C++, and Fortran codes. The common file format will
enable groups that use completely different simulation im-
plementations to transparently share datasets and custom
data analysis tools like PartView. We will show examples
and benchmark data for various platforms.

MOTIVATION

The motivation for this undertaking is to create a file
format that is suitable for large-scale parallel simulation
codes. A suitable data format must have the following
properties: it must be a machine-independent binary rep-
resentation that is self-describing, easily extensible, lan-
guage independent, efficient (both for serial and parallel),
and produces files that are seamlessly sharable between dif-
ferent programs. In the following sections we describe the
motivation for these features and how they can be accom-
plished using the proposed implementation.

Machine Independence

Processor architectures use different binary representa-
tions for data. While the IEEE 754 standard has decreased
the number of differing floating point number represena-
tions, byte-order still remains a source of incompatibility.
While it is trivial to byte-swap a file from a programming
standpoint, it creates a number of long-term file manage-
ment difficulties for groups that are sharing or maintain-

∗This work (LBNL-57607) was supported by the Director, Office of
Science, Office of Advanced Scientific Computing Research, of the U.S.
Department of Energy under Contract No. DE-AC03-76SF00098 and the
DOE SciDAC project on “Advanced Computing for 21st Century Accel-
erator Science and Technology.”

ing a repository of simulation data. Given files that store
data structures with differently sized elements, one must
know the storage format precisely in order to apply byte-
swapping properly. HDF5 does not suffer from these prob-
lems because the file format is completely self-describing
and the internal binary structures are all machine indepen-
dent. The HDF5 library is able to convert data that is stored
in any native machine represenation in the data file into a
native binary representation in memory as part of the read-
ing process with little performance penalty.

Language Independence

The three most common languages used for implement-
ing applications in the arena of computational sciences are
Fortran, C and C++. The file format and associated API
must hide differences in the binary file-storage conventions
of these languages as well as offering native API bindings
for each of these programming languages.

For instance, Fortran unformatted binary files contain in-
teger fields at the beginning and the end of each record that
describe the length of the record. The size of these integer
tags is usually 32-bits, but some fortran compiler imple-
mentations will use larger tags in order to represent larger
record sizes. C and C++ binary files have no such conven-
tion for record-oriented storage. The language-dependent
differences in binary storage layout conventions can cause
difficulties for scientists who wish to share data files be-
tween Fortran and C/C++ implementations of a code, or
with visualization tools that are primarily written in C/C++.
The API bindings and underlying file format provided by
the H5Part API and the underlying HDF5 file format are
able to hide these differences in order to provide symmet-
ric access via all languages.

Self-Describing

The data is accessed by names, for example, one might
ask for ‘the column of data called px’ – affording a layer of
file-layout independence. In other words, self-describing
data is not accessed by a position in a file but by name
of the datasets. Various attributes of the data that may be
necessary to using it are available. For example, one can
ask “what are the units of column px?’.

There are a number of examples of self-describing file
formats. Examples include HDF earlier HDF implementa-
tions leading up to HDF version 5 and the Unidata NetCDF
format. Another very popular approach is the Self Describ-

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

4129 0-7803-8859-3/05/$20.00 c©2005 IEEE

ing Data Sets (SDDS) [3] although it is only serial in na-
ture. HDF5 is a complete rewrite of the HDF file format
that supports parallel I/O and offers a much leaner, more
flexible interface. Because it is self-describing, the entire
contents of an HDF5 file can be browsed and even con-
verted to ASCII text, including XML syntax text files, us-
ing the built-in ’h5ls’ and ’h5dump’ tools without specific
knowledge of the internal file format.

Figure 1: color: A common self-describing file format al-
lows different codes to share a common set of visualization
and data analysis tools. PartView and AVS/Express, pic-
tured above, are able to read and display contents of an
H5Part/HDF5 file written on any machine in any language,
regardless of how many processors are used.

The primary advantage of accessing data and its at-
tributes is that one can then construct more flexible data
manipulation tools that are capable of surviving the natural
evolution of file formats. Data formats can be extended to
include additional information without breaking older file
readers. Self-describing data contains all the information
that analysis tools need to manipulate various types of data
correctly. Two examples of such tools using the proposed
file format are shown in Figure 1 As a result, data exchange
between different simulations tools is much simpler, robust
and better defined by using self-describing data sets.

High Performance

The HDF5 file format allows data elements to be written
to disk in the native binary representation. The file for-
mat stores a description of the native data representation of
the machine that wrote the data so that it can be automat-
ically translated to the native binary representation of the
machine that reading the data (eg. if the byte order differs).
In contrast to XDR, where the data always gets translated
to/from an intermediate machine-neutral format, the HDF5
data conversion only occurs if the stored data represena-
tion is different from the native binary representation of the
machine that is reading the file, so there is no performance
penalty if the machines have the compatible binary data
formats. [ada: need work] In general, HDF5 offers perfor-
mance that is very close to what can be achieved by writing
an ad-hoc machine-dependent binary for F77 unformatted
data file.

Parallel I/O

HDF5 also supports parallel I/O capabilities for MPI
programs. The naive approach to writing data from a par-
allel program is to write one file per processor. While this
is simple to implement and very efficient on most cluster
filesystems, it leads to file management headaches when it
comes the time to analyze the data. One must either recom-
bine these separate files into a single file or create ponder-
ous user-interfaces that allow a data analysis application to
read from a directory full of files instead of just one file.

Parallel I/O methods, allow you to write data into a sin-
gle file from all of the tasks of a parallel program. The
performance is typically lower than that of writing one-file-
per-processor, but it makes data management much simpler
after the program has finished. No additional recombining
steps are required to make the file accessible by vis-tools
or for restarting a simulation using a different number of
processors.

Parallel HDF5 uses MPI-I/O for its low-level implemen-
tation. The mechanics of using MPI-I/O are all hidden
from the user by our H5Part file API (the code looks nearly
identical to reading/writing the data from a serial program).
While the performance is not as good as writing one-file-
per-processor, we demonstrate that writing files with Par-
allel HDF5 is consistently faster than writing the data in
raw/native binary using the MPI-I/O library. This effi-
ciency is made possible through sophisticated HDF5 tuning
directives that control data alignment and caching within
the HDF5 layer. Therefore, we argue that it would be diffi-
cult to match HDF5 performance even using a home-grown
binary file format.

H5PART FILE ORGANIZATION AND API

The proposed file storage format uses HDF5 for the low-
level file storage and a simple API to provide a high-level
interface to that file format. A programmer can either use
the H5Part API to access the data files or write directly to
the file format using some simple conventions for organiz-
ing and naming the objects stored in the file.

The HDF5 format, its benefits, and its file organization
is decribed at [2]. The file format was also adopted by the
DOE ASCI-VIEWS effort, so the library has been tuned
and adapted to read and write data efficiently on large-scale
parallel computing systems. We adopted HDF5 for our file
storage needs because it offers all that is needed as stipu-
lated in the motivation section.

We describe now the H5Part conventions for storing ob-
jects in the HDF5 file as well as some examples of the API.

H5Part File Organization

In order to store Particle Data in the HDF5 file format,
we have formalized the hierarchical arrangement of the
datasets and naming conventions for the groups and asso-
ciated datasets. The sample H5Part API formally encodes
these conventions in order to provide a simple and uniform

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 4130

way to access these files from C, C++, and Fortran codes.
The API makes it easier to write very portable data adap-
tors for visualization tools in order to expand the number of
tools available to access the data. Even so, anyone can use
the HDF5 h5ls utility to examine the organization of the
H5Part files and even write their own HDF5-based inter-
face for reading and writing the file format. The standards
offered by the sample API are completely independent of
the standard for organizing data within the file.

The file format supports the storage of multiple timesteps
of datasets that contain multiple fields. The fields cor-
respond to different properties of the particles at that
particular time step – for instance, the 3-dimensional
cartesian position of the particles (X,Y,Z) as well as
the 3-dimensional phase of each particle (PX,PY, PZ).
These two degrees of freedom are organized such that the
timesteps are groups (time groups) that are added sequen-
tially to the root group (“/”). The fields are datasets that
are nested within the time groups. The convention for
naming the time group is Particles < integer > where
< integer > is a monotonically increasing counter for the
number of timesteps stored in the file.

The fields contained within a given time group are sim-
ply named for the property of the particle they represent.
For instance, the phase of the particle stored in a simula-
tion variable called ’px’ is simply named “px′′. The field
names are user-defined and can be understood automati-
cally by the visualization tools that read the file. The only
other convention is that each time group must contain the
same set of fields – the contents of the fields will change,
but the set of names for these fields must remain the same
for all timesteps.

The fields can be either integer or real data types. Ini-
tially, the file format supports double precision float and
64-bit integers in order to simplify the requirements for
file readers, but HDF5 is capable of automatically down-
converting to 32-bit data types upon request. The API will
be extended accordingly to support these conversions.

Finally, the file, the individual timesteps, and the indi-
vidual data arrays can contain attributes that provide addi-
tional information about the data. For instance, the datasets
can be annotated with attributes containing units for a given
data field, simulation parameters, or code revision informa-
tion. The attributes are key-value pairs where the key is a
string that is associated with the file, group, or dataset, and
the value is either a string, a real value, or an integer asso-
ciated with that key.

GENERAL FORM IN PSEUDOCODE

In Figure 2 we show the very simple API for writing
data. The API for reading is almost symmetric. It is also
worth to note that there are minimal differences whether
one read/write serial or in parallel. The API consists of
a small number of C, C++ and Fortran functions and will
be described elsewhere. In the parallel case the original
domain decomposition can be used or the data can be de-

composed according to the new number of processor nodes
available. The resulting HDF5 file will contains a simple
directory structure that can be navigated using the generic
’h5ls’ utility;

if(parallel);

filehandle=OpenFile(filename,mode)

else

filehandle=OpenFile(filename,mode,mpicomm)

SetNumberOfParticles(filehandle);

loop(step=1,NSteps);

SetStep(filehandle,step);

WriteData(filehandle,fieldname1,data1);

write more data
WriteData(filehandle,fieldname<n>,data<n>);

CloseFile(filehandle);

Figure 2: Usage of H5Part in pseudo-code.

PERFORMANCE

Preliminary performance estimations, looking at global
(GD) and local data (LD) rates, suggests that our HDF5
writing has a very good performance even with respect to
raw mpi, as shown in Table 1.

Mode GD [MB/s] LD [MB/s]
mpi-io (one file) 241 3.7
one file per proc 1288 20
H5Part/pHDFf5 (one file) 773 12

Table 1: 64 IBM SP-3 nodes writing 51e6 particles (6D).

CONCLUSIONS AND FUTURE WORK

The file format will be extended in the near future to in-
tegrate fast bitmap indexing technology [4] in order to pro-
vide accelerated queries of data stored in the file. With fast-
bit technolgy, a user can efficiently extract subsets of data
using compound query expressions such as (velocity >
1e6) AND (0.4 < phase < 1.0).

We are also constantly tuning the performance of the par-
allel data file format implementation. We will also be port-
ing the H5Part reader to a wider variety of visualization
tools.

REFERENCES

[1] A. Adelmann, R.D Ryne, C. Siegerist, J. Shalf, ”From Visu-
alization to Data Mining With Large Datasets,” PAC, 2005.

[2] HDF5 Home Page, http://hdf.ncsa.uiuc.edu/HDF5.

[3] Definitions and libraries for SDDS im-
plementation may be found at the link
http://www.aps.anl.gov/asd/oag/oagPackages.shtml.

[4] K. Stockinger, J. Shalf, W. Bethel, K. Wu. ”DEX: Increas-
ing the Capability of Scientific Data Analysis Pipelines by
Using Efficient Bitmap Indices to Accelerate Scientific Vi-
sualization.” Scientific and Statistical Database Management
Conference (SDDBM), 2005.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

4131 0-7803-8859-3/05/$20.00 c©2005 IEEE

