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Abstract

An efficient parallel Simplex optimizer was developed
that can on run Solaris and Linux clusters. It can optimize
the result of running essentially any program or script that
returns a penalty function value. We have used this opti-
mizer with elegant to optimize the dynamic aperture of
storage ring designs. This paper discusses the optimiza-
tion algorithm and performance, design of penalty func-
tions, optimization results, and applications in storage ring
design.

INTRODUCTION

Optimization is commonly used in accelerator design to
find linear optics solutions. Such optimizations are usually
fairly fast as linear optics computations are themselves fast.
For high-brightness storage rings, optimization of nonlin-
ear elements (e.g., sextupoles) is also important in obtain-
ing sufficient dynamic aperture. However, such optimiza-
tion can be very time consuming as the basic computations
are time consuming. For this reason, we developed an effi-
cient parallel Simplex optimizer that can run on Solaris and
Linux clusters. It can optimize the result of running essen-
tially any program or script that returns a penalty function
value.

ALGORITHM

The original simplex method [1, 2] is based on the sim-
ple geometric idea that a simplex of (n+1) vertices in input-
independent variable-vector space can be transformed into
a new one by changing a single vertex, and in particular,
by reflecting a selected vertex through the centroid of the
remaining n vertices (or equivalently through the centroid
of the (n + 1) vertices with an appropriate reflection coef-
ficient other than unity). Further transformations involving
a change in a single vertex were given geometric names
such as “contraction” or “expansion” [3, 4]. Changes af-
fecting n vertices were defined and applied under the titles
“shrinkage,” “translation,” and “rotation” [5]. The above
transformations were developed for serial algorithms for
which minimizing the number of new vertices is the target
since the normal measure of work done is the total num-
ber of function evaluations. However, for parallel algo-
rithms many function evaluations (FEs) may be performed
at the same time. The term Effective Function Evaluations
(EFEs) [5] is used as a measure of complexity or the num-
ber of time slots required on a particular parallel machine.
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In serial algorithms, the transformations of reflection,
expansion, and contraction define a new simplex by chang-
ing only one selected point, say Xj , so that the operator Ti,
i �= j, simply selects and repeats Xi. For parallel transfor-
mations, the new simplex is created by applying a parallel
operator on every vertex in the original simplex

(X0,X1, . . . ,Xn)new = T (X0,X1, . . . ,Xn), (1)

where T is a parallel operator that can be expressed as
a product of the serial transformations. A new simplex
is formed in parallel by employing n parallel processors
to compute the n new points (and their corresponding
function values). Our method is a revised version of
Bassiri’s method [6, 7]. Bassiri’s method is very efficient in
terms of EFEs compared with the Torczon Parallel Multi-
Directional Search (PMDS) method [6]. In addition to
transforming the vertexes in parallel as done in Bassiri’s
method, we apply the above three parallel transformations
and shrinkage in parallel. Parallel shrinkage transformation
shrinks every other n vertexes toward the low point (which
has the smallest function value). The simplex will then be
replaced by the trial simplex that contains the overall min-
imum. Therefore, our method is expected to be three times
faster than Bassiri’s method.

We also added other features:

• Trial simplex from reflection through low point.

• Replacement of the high point.

• Abnormal transformation, which uses larger steps
than normal transformation.

• Comparison with previous best to assess convergence.
The default convergence test is to compare the differ-
ence between high and low points.

• Restart feature, in which the best result is written to a
file and can be used for the initial values in next opti-
mization.

Replacing the high point and comparing with the
previous best result helped speed convergence in some
cases. Abnormal transformation provides faster conver-
gence when the initial guess is far from the minimum.

PERFORMANCE

Bassiri’s method reduced the EFEs by about 1000 times
compared with the PMDS method. Our parallel simplex
method was checked with the testing functions used by
Bassiri including Powell’s function, TRID-Dixon’s func-
tion, and Rosenbrock’s function. The difference between
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high point and low point in the new simplex is used for
the convergence test. For Powell’s function, the reflecting
through centroid method converges slower than reflection
through low point method. If the difference between the
high point and low point in the new simplex that contains
the overall minimum is used for the convergence test, the
EFEs are about the same as Bassiri’s. However, the accu-
racy is much greater, for example the F (x) is 1.0× 10−21

with tolerance of 1.0×10−2 and 1.0×10−68 with tolerance
of 1.0 × 10−11. If the difference between the current best
result and the previous best result is used for the conver-
gence test, the EFEs is reduced by five times with the same
accuracy, that is, our method converges about four times
faster than Bassiri’s method, as shown in Table 1. The x0

in the tables is the initial or guessed value vector of the
independent variables.

Table 1: Powell’s Function (n=4); x0 = (3,−1, 0, 1)T .
Step Bassiri This Paper
Tol EFEs F(x) EFEs F(x)

1.0e-02 39 4.49e-03 8 1.37e-03
1.0e-03 43 3.28e-04 10 8.72e-05
1.0e-04 57 2.68e-05 11 2.19e-05
1.0e-05 60 1.66e-05 13 1.37e-06
1.0e-06 64 1.37e-06 15 8.56e-08
1.0e-07 69 1.09e-07 16 2.14e-08
1.0e-08 73 1.12e-08 18 1.33e-09
1.0e-09 77 3.27e-09 20 8.36e-11
1.0e-10 84 3.51e-11 21 2.09e-11
1.0e-11 88 2.91e-12 23 1.30e-12

For TRID-Dixon’s function, the reflecting-through-
centroid method converges as fast as the reflecting-through-
low-point method; however, the latter gives better accuracy.
The results with reflecting-through-low-point method are
shown in Table 2.

Table 2: TRID-Dixon’s Function (n=10); x0 =
(1, . . . , 1)T .

Step Bassiri This Paper
Tol EFEs F(x) EFEs F(x)

1.0e-02 123 3.208e-02 14 6.706e-07
1.0e-03 135 5.069e-03 17 1.048e-08
1.0e-04 150 6.447e-04 20 1.637e-10
1.0e-05 168 9.558e-05 22 1.023e-11
1.0e-06 192 3.600e-06 25 1.598e-12
1.0e-07 209 4.665e-07 28 2.498e-15
1.0e-08 218 1.905e-07 30 1.561e-16
1.0e-09 253 6.101e-09 33 2.439e-18
1.0e-10 268 1.282e-09 36 3.812e-20
1.0e-11 294 3.672e-11 38 2.382e-21

Table 2 shows that this algorithm works very efficiently
with the TRID-Dixon function. In addition to much greater
accuracy, it is about ten times faster than Bassiri’s method.

For Rosenbrock’s function, the two methods (reflecting
through centroid or low point) work similarly. The results
of the reflecting-through-centroid method are listed in Ta-

ble 3. It can be seen that this parallel optimizer for Rosen-
brock’s function is about 30 times faster than Bassiri’s
method and delivers much greater accuracy. Bassiri did
not test the Dixon function, which is more complicated and
turns out to converge slower than other functions. Our test
shows that the reflecting-through-centroid method gives a
better result than the reflecting-through-low-point method.
Also, we obtained better accuracy if the high point of
shrinkage simplex is replaced by the local minimum if it
is smaller than the high point.

Table 3: Rosenrbrock’s Function (n=2); x0 = (−1.2, 1)T .
Step Bassiri This Paper
Tol EFEs F(x) EFEs F(x)

1.0e-02 17 4.83 10 7.47e-06
1.0e-03 196 3.96e-02 11 3.81e-08
1.0e-04 250 2.31e-02 13 3.81e-08
1.0e-05 312 4.04e-04 15 1.49e-10
1.0e-06 332 2.17e-04 16 1.49e-10
1.0e-07 409 1.86e-05 18 1.14e-10
1.0e-08 500 9.87e-07 20 5.82e-13
1.0e-09 572 1.17e-07 21 5.82e-13
1.0e-10 654 1.99e-11 23 2.27e-15
1.0e-11 25 2.27e-15

It seems that parallel simplex does not work well for the
Dixon function, which implies that parallel simplex may
not be able to find the minimum for some applications. It
should be noted that the EFEs and accuracy depend on the
initial values (i.e., guess values), so that fewer EFEs are
needed if the initial point is closer to the minimum posi-
tion. This parallel simplex provides an option of saving the
results into a file, allowing them to be used as the start-
ing point for the next optimization, which saves EFEs and
helps convergence for difficult functions.

The testing results indicate that this parallel simplex is
more efficient than Bassiri’s method [7] with greater accu-
racy. However, in practical applications rather than math-
ematical functions, this parallel simplex does not always
give good results. As a result, another parallel simplex
called parallel single simplex was implemented, which em-
ploys direct parallelization of the serial algorithm, i.e., only
the high point is transformed but four types of transfor-
mation are done in parallel; that is, unlike parallel sim-
plex, which creates four new trial simplexs at each itera-
tion, there is only one simplex at each iteration of parallel
single simplex. Parallel single simplex converges slower
than parallel simplex, so it is better to start with the result
from parallel simplex. The actual application will be stud-
ied in the following section.

APPLICATIONS

We developed the parallel optimizer to assist with diffi-
cult optimization problems, such as those involved in high-
brightness storage ring design. While linear optics opti-
mization, including optimization of the emittance and simi-
lar quantities, is well handled by elegant’s [8] built-in op-
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timizer, optimization of nonlinear properties is more chal-
lenging and time consuming. Our goal is sufficient dy-
namic aperture for injection and lifetime. This includes,
of course, off-momentum dynamic aperture, which is im-
portant in obtaining good Touschek lifetime.

Several approaches have been explored in this work:

• Direct optimization of the dynamic aperture. In this
case, dynamic apertures are computed for a series of
energies, then analyzed to provide a penalty function
value. A possible penalty function is simply the area
inside the dynamic aperture summed over all energies.

• Optimization of the number of particles surviving N
turns. This is similar to the previous idea, except here
we track a beam with initially large phase-space vol-
ume, encompassing the target transverse and momen-
tum apertures.

• Minimization of the coefficients of the tune variation
due to amplitude and momentum. Here, we use ana-
lytical or numerical methods in elegant to determine
the coefficients of the tune variation.

• Minimization of the tune spreads due to amplitude
and momentum spread. In this case, we simply track
an ensemble of particles to get the tune spread from
transverse amplitude. The tune spread from momen-
tum spread is computed by matrix methods.

We have had little success with the first two methods. A
common result with these methods is development of sta-
ble, disconnected islands for off-momentum particles. The
third method proved problematic because determination of
the coefficients of the tune variation is difficult when some
of the probe particles are unstable or nearly so.

We found the best success with the last method. De-
termination of tune spread for a grid of particles is simple
and relatively robust. Typically we start by using a grid
that covers a relatively small region of the desired aperture.
When this has converged, we increase the area covered by
the grid and repeat the optimization.

The Advanced Photon Source (APS) storage ring is a
7-GeV synchrotron radiation facility. It presently operates
with a lattice giving an effective emittance (beam size times
divergence) of 3.1 nm. One of the applications of the par-
allel optimizer is to help develop lattices with even smaller
emittance. These lattices are challenging in that the dy-
namic and momentum apertures tend to be quite small, re-
sulting in poor lifetime and injection efficiency. To develop
candidate lattices, we used elegant’s conventional opti-
mization module to find solutions for a variety of working
points. In finding these solutions, we also constrained the
tune spreads using the last method mentioned above. This
involved running elegant once for each working point,
using up to 40 processors. Following this, several working
points were clearly better and were selected for improve-
ment using the parallel optimizer. Figure 1 shows the dy-
namic aperture prior to use of the parallel optimizer, while

Figure 2 shows the improved result after using the paral-
lel optimizer. We see a distinct improvement due to the
optimization. Particularly interesting is the absence of any
obvious resonance effects in the optimized result.

Figure 1: Dynamic aperture before optimization.

Figure 2: Dynamic aperture after optimization.
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