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Abstract

We have generalized the analysis of the classical Har-
ris instability to the case of a one-component intense
charged particle beam with anisotropic temperature includ-
ing the important effects of finite transverse geometry and
beam space-charge. For a long, coasting beam, the delta-
f particle-in-cell code BEST and the eighenmode code
bEASt have been used to determine detailed 3D stability
properties over a wide range of temperature anisotropy and
beam intensity. A theoretical model is developed based
on the Vlasov-Maxwell equations which describes the es-
sential features of the linear stage of this instability. Both
the simulations and the analytical theory clearly show that
moderately intense beams are linearly unstable to short-
wavelength perturbations provided the ratio of the longitu-
dinal temperature to the transverse temperature is smaller
than some threshold value.

INTRODUCTION

It is well known that in electrically neutral plasmas with
uniform magnetic field and strongly anisotropic electron
distribution (T||e/T⊥e � 1), where subscript ||(⊥) de-
notes parallel (perpendicular) to the magnetic field, an elec-
trostatic (Harris-like) collective instability may develop if
the plasma is sufficiently dense that ωpe > ωce, where
ωpe = (4πe2n/m)1/2 is the electron plasma frequency,
and ωce = eB/mc is the electron cyclotron frequency
[1]. Such conditions develop naturally in accelerators. In-
deed, due to the conservation of energy for particles with
charge eb and mass mb accelerated by a voltage V , the
energy spread of particles in the beam does not change,
and (nonrelativistically) ∆Ebi = mb∆v2

bi/2 = ∆Ebf =
mbVb∆vbf , where Vb = (2ebV/mb)1/2 is the average
beam velocity after acceleration. Therefore, the velocity
spread-squared, or equivalently the temperature, changes
according to T||bf = T 2

||bi/2ebV ( for a nonrelativistic
beam). In addition, the transverse temperature may in-
crease due to nonlinearities in the applied focusing field,
the self-field forces, nonstationary beam profiles, and beam
mismatch. For the case of charged particle beams in accel-
erators, the cyclotron oscillations in the applied magnetic
field are replaced by the betatron oscillations of the beam
particles in the combined applied and self-generated fields
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. Heavy ion fusion exper-
iments require transporting high-current beams when the
average depressed betatron frequency of the beam particles
is much smaller than the average plasma frequency of the
beam particles. The resulting anisotropy-driven instabil-
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ity may lead to a detoriation of the beam quality and an
increase in the longitudinal velocity spread, which would
make focusing the beam difficult and impose a limit on the
minimum spot size achievable in heavy ion fusion experi-
ments.

SIMPLIFIED MODEL OF
ELECTROSTATIC HARRIS-TYPE

INSTABILITY

For simplicity, the analysis is carried out in the beam
frame (Vb = 0). In what follows, it is convenient to intro-
duce the effective depressed betatron frequency ωβ⊥ de-
fined by

ω2
β⊥ =

2T⊥b

mbr2
b

= ω2
f − ω̄2

pb/2, (1)

where T⊥b is the transverse beam temperature, rb is the
root-mean-square beam radius, mb is the mass of a beam
particle, and

ω̄2
pb =

4πe2
b

mbr2
b

∫ rw

0

drrnb(r) (2)

is the average beam plasma frequency-squared. The nor-
malized tune depression ν̄/ν0 is defined by

ν̄

ν0
≡ ωβ⊥

ωf
, (3)

where ωf = const. is the transverse frequency associated
with the applied focusing field in the smooth-focusing ap-
proximation.

We now briefly illustrate the physical mechanism for
the electrostatic Harris instability in intense particle beams
with a Kapchinskij – Vladimirskij (KV) distribution. As
shown in previous studies [9, 10, 11, 12], the dipole mode
has the highest growth rate, and for T||b = 0 the growth rate
is an increasing function of kzrb and approaches a maxi-
mum value for k2

zr2
b � 1. Therefore, we consider dipole-

mode perturbations with k2
zr2

b � 1, which in lowest order
correspond to a rigid displacement of the beam centroid
in the transverse x-direction (for example) with perturbed
electric field given approximately by δE = −ikzδφêz .
Since a KV beam has a uniform density profile, the per-
turbed electrostatic potential inside the beam has the form

δφ(x, t) = φ̂
x

rb
exp(ikzz − iωt), (4)

where φ̂ is the perturbation amplitude, and ω and kz are the
perturbation frequency and the longitudinal wavenumber,
respectively.
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Next, we consider a beam particle oscillating longitudi-
nally in the perturbed electric field and at the same time per-
forming transverse betatron oscillations. For general distri-
bution function, the equilibrium self-electric field is non-
linear, and the transverse betatron oscillation of the beam
particles will contain many harmonics of the betatron fre-
quency, which generally depends on the particle energy and
angular momentum [9, 11, 12]. For purposes of illustrating
the physical mechanism, we consider here the simplified
model of an equivalent KV beam where all of the particles
oscillate with the same frequency, equal to the average de-
pressed betatron frequency ωβ⊥ defined in Eq. (1), i.e.,

x(t) = x̂ cos(ωβ⊥t + α0), (5)

where α0 is the oscillation phase at t = 0, x̂ =√
2Hx/mb/ωβ⊥ is the oscillation amplitude, and Hx is

the transverse energy.
Making use of Eqs. (4) and (5), the longitudinal equation

of motion for a beam particle becomes

z̈ = −ikz
eb

mb
φ̂

x̂

rb
cos(ωβ⊥t+α0) exp(ikzz0 − iωt), (6)

where we have assumed that beam is cold in the longitudi-
nal direction. Integrating Eq. (6) with respect to time t, we
obtain

zα = ikz
eb

mb
φ̂

x̂

2rb

[
exp(iα)

(ω − ωβ⊥)2

+
exp(−iα)

(ω + ωβ⊥)2

]
exp(ikzz0 − iωt), (7)

where α = α0 + ωβ⊥t. To calculate the average displace-
ment 〈z〉(x, z, t) in the z direction we average over all par-
ticles with the same transverse position x at time t. This
gives

〈z〉(x, z, t) =
1
2
(zα + z−α)

= −ebδEz

2mb

[
1

(ω − ωβ⊥)2
+

1
(ω + ωβ⊥)2

]
, (8)

where δEz = −ikzδφ [see Eq. (4)]. Note that even though
the individual particle motion [Eq. (7)] has two character-
istic frequencies, ω−ωβ⊥ and ω +ωβ⊥, the average quan-
tity 〈z〉 oscillates at the perturbation frequency ω [Eq. (8)].
From the continuity equation for the density perturbation,

∂δnb

∂t
+

∂

∂z

(
n0

b

∂〈z〉
∂t

)
= 0, (9)

we obtain

δnb = −n0
∂〈z〉
∂z

. (10)

Substituting Eqs. (8) and (10) into Poisson’s equation ∇ ·
δE 	 ∂δEz/∂z = 4πebδnb, we obtain the simple disper-
sion relation

1 =
ω̄2

pb

2

[
1

(ω − ωβ⊥)2
+

1
(ω + ωβ⊥)2

]
, (11)

where has been made use of the average value of the plasma
frequency introduced in Eq. (2) to take into account the
beam density profile shape in a lowest-order sense. Using
the definition of the depressed tune [Eqs. (1) and (3)], we
can rewrite Eq. (11) as

ν2
n

1− ν2
n

=
[

1
(ωn/νn − 1)2

+
1

(ωn/νn + 1)2

]
, (12)

where νn = ν̄/ν0 is the normalized depressed tune, and
ωn = ω/ωf is the normalized mode frequency. Equation
(12) is easily solved to give

ω2
n = 1±

√
(1− ν2

n)(1 + 3ν2
n). (13)

From Eq. (13), we determine that the mode with the
lower sign in Eq. (13) is unstable and purely growing for
νn < νth

n =
√

2/3 ≈ 0.82, with maximum growth

rate (Imω)max/ωf =
√

2/
√

3− 1 ≈ 0.39 occurring

for νmax
n =

√
1/3 ≈ 0.58. Also, for very intense

beams with νn → 0, the normalized growth rate becomes
(Imω)/ωf 	 ν̄/ν0. In Fig. 1(a), the normalized growth
rate (Imω)/ωf , plotted as a function of the normalized
tune depression ν̄/ν0 [Eq. (13)], is compared with detailed
numerical simulation results [11, 12]. Despite the approx-
imations made in the present simplified model, the agree-
ment is reasonably good.

SIMULATION STUDIES OF THE
TEMPERATURE-ANISOTROPY

INSTABILITY

For an arbitrary equilibrium distribution one cannot
solve the stability problem analytically and must em-
ploy numerical techniques. In our previous studies of
the temperature-anisotropy instability we used the linear
eighenmode method as implemented in the Beam Eigen-
mode and Spectra (bEASt) Code [12], and the particle-
in-cell δf method as implemented in Beam Equilibrium,
Stability and Transport (BEST) code [9, 10, 11, 13] to in-
vestigate the detailed linear properties of the instability for
perturbations about an anisotropic thermal equilibrium dis-
tribution (T⊥b > T‖b) described in the beam frame (Vb = 0
and γb = 1) by the self-consistent axisymmetric Vlasov
equilibrium

f0
b (r, p) =

n̂b

(2πmb)3/2T⊥bT
1/2
||b

exp
(
−H⊥

T⊥b
− p2

z

2mbT‖b

)
.

(14)
Here, H⊥ = p2

⊥/2mb + (1/2)mbω
2
f (x2 + y2) + ebφ

0(r)
is the single-particle Hamiltonian for the transverse parti-
cle motion, p⊥ = (p2

x + p2
y)1/2 is the transverse particle

momentum, r = (x2 + y2)1/2 is the radial distance from
the beam axis, and φ0(r) is the equilibrium space-charge
potential determined self-consistently from Poisson’s equa-
tion,

1
r

∂

∂r

(
r
∂φ0

∂r

)
= −4πebn

0
b , (15)
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Figure 1: Plots of the normalized growth rate
(Imω)max/ωf and real frequency (Reω)max/ωf at
maximum growth versus normalized tune depression ν̄/ν0

for T||b/T⊥b = 0 and m=0 (solid curve) and m=1 (dotted
curve). The thick solid curve corresponds to the simple
estimate in Eq. (13).
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Figure 2: Plots of the normalized growth rate (Imω)/ωf

versus kzrb for ν̄/ν0 = 0.3, T||b/T⊥b = 0 and m=0 (curve
a) and m=1 (curve b).

where n0
b(r) =

∫
d3pf0

b (r, p) is the equilibrium number
density of beam particles. We also assume that the beam is
located inside a perfectly conducting cylindrical pipe with
radius rw. Furthermore, setting φ0(r = 0) = 0, the con-
stant n̂b occurring in Eq. (14) can be identified with the
on-axis density n0

b(r = 0), and the constants T⊥b and T‖b

can be identified with the transverse and longitudinal tem-
peratures (energy units), respectively.

The results obtained with this two codes are in good
agreement. We illustrate here some typical results.

Typical numerical results obtained using the bEASt code
are presented in Figs. 1 – 3 for the case where rw = 3rb.
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Figure 3: The longitudinal threshold temperature T th
||b for

the onset of instability normalized to the transverse tem-
perature T⊥b is plotted versus normalized tune depression
ν̄/ν0 for two values of the azimuthal mode number, m = 0
(solid line) and m = 1 (dotted line).

Figure 1 shows the normalized growth rate (Imω)max/ωf

and real frequency (Reω)max/ωf at maximum growth
plotted versus the normalized tune depression ν̄/ν0 for
T||b/T⊥b = 0 and azimuthal mode number m = 0, 1. For
m = 0, there are two distinct unstable modes. One is the
fastest growing mode for ν̄/ν0 > 0.55, and the other is
the fastest growing mode for ν̄/ν0 < 0.55. The approxi-
mate expression [Eq. (13)] for the normalized growth rate
(Imω)max/ωf is also plotted in Fig. 1 a (thick solid curve)
for comparison. The m = 1 dipole mode has the highest
growth rate, (Imω)/ωf 	 0.34, for ν̄/ν0 	 0.62. The
instability is absent for ν̄/ν0 > 0.82 for the choice of pa-
rameters in Fig. 1. The real frequency (Reω)/ωf of the
unstable mode with azimuthal number m = 1 is zero, and
is not plotted in Fig. 1. Moreover, the real frequency is
plotted only for the most unstable modes in Fig. 1b.

Figure 2 shows the normalized growth rate (Imω)/ωf

plotted versus the normalized wavenumber kzrb for nor-
malized tune depression ν̄/ν0 = 0.3 and initial tempera-
ture ratio T‖b/T⊥b = 0.0. The curves (a) and (b) corre-
spond to azimuthal mode numbers m = 0 and m = 1,
respectively. As expected, the instability is present only
for short-wavelength perturbations with k2

zr2
b > 1. The

effect of finite T‖b (not shown [9, 10, 11, 12]) is to intro-
duce a finite bandwidth in kzrb for the instability, since the
modes with large values of kzrb are stabilized by longitu-
dinal Landau damping in velocity space. Also, the unstable
dipole mode with m = 1 is purely growing.

An important characteristic of the instability is the lon-
gitudinal threshold temperature T th

||b for the onset of insta-
bility normalized to the transverse temperature T⊥b. This
quantity is plotted in Fig. 3 versus the normalized tune de-
pression ν̄/ν0 for the two values of azimuthal mode num-
ber corresponding to m = 0, 1. Note from Fig. 3 that the
maximum threshold value, T th

‖b /T⊥b = 0.11, is achieved
for moderately intense beams with ν̄/ν0 = 0.4.

Figures 4-8, obtained using the BEST simulation code,
illustrate the nonlinear stage of the instability for a beam
with ν̄/ν0 = 0.6 and initial temperature ratio T||b/T⊥b =
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Figure 4: The time history of the two azimuthal compo-
nents of the density perturbation is shown for m=0 (red),
and m=1(black).
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Figure 5: Fourier spectra of the density perturbation δnb

plotted versus kzrw at times ωf t = 50 and ωf t = 150.

10−4. Figure 4 shows the time history of the two azimuthal
components of the density perturbation corresponding to
m=0 (red), and m=1(black). As can be seen from Fig. 4,
the m = 1 mode dominates during the linear stage of the
instability, whereas the m = 0 mode becomes dominant
after the instability has nonlinearly saturated. During the
linear stage of the instability, the two modes have frequen-
cies ω = 0 for m = 1, and ω = 0.55ωf for m = 0. During
the nonlinear stage, the frequency of the dominant m = 0
mode is almost doubled to ω 	 ωf . Figure 5 shows Fourier
spectra of the density perturbation δnb plotted versus kzrw

at two different times corresponding to the end of the lin-
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Figure 6: Plot of effective longitudinal temperature T||b ≡
mb < v2

|| > as a function of time.
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Figure 7: Contour plots in longitudinal phase space of the
beam at times (a) ωf t = 65, (b) ωf t = 75, and (c) ωf t =
150.
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Figure 8: Plots of z-averaged longitudinal velocity distrib-
ution at times ωf t = 75 (red dashed line), ωf t = 100 (red
dotted line) and ωf t = 150 (solid blue line).
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ear stage (ωf t = 50), and the fully developed nonlinear
stage (ωf t = 150). Initially, the instability is excited over
a wide range of longitudinal wavenumbers kzrb > 1 (see
also Fig. 2). During the nonlinear stage, the spectra shifts
into the long-wavelength region with kzrb ∼ 2.

Figure 6 shows the behavior of the effective longitu-
dinal temperature T||b ≡ mb < v2

|| > as a function of
time. Comparing with Figure 4, note that the longitudinal
temperature stays almost constant during the entire linear
stage of the instability, growing super-exponentially during
a short time period 50 < ωf t < 70, and then slowly in-
creasing until reaching a constant level T||b/T⊥b 	 0.088
at time ωf t ∼ 150. The temperature behavior is better
illustrated by examining the longitudinal phase space of
the beam. Figure 7 shows the contour plots in longitu-
dinal phase space at times (a) ωf t = 65, (b) ωf t = 75,
and (c) ωf t = 150. Since the linear stage of instability is
dominated by the m = 1 mode with zero real frequency,
and a wide range of longitudinal wavenumbers, at time
ωf t = 65 the entire distribution is trapped inside the region
of velocity space corresponding to |δv| ≤

√
2ebδφ/mb =

(ωpb/kz)
√

2δnb/n0
b 	 γ/kmin

z , where γ 	 0.25ωf is
the linear growth rate, and kmin

z rb ∼ 2 is the smallest
wavenumber with appreciable growth rate. During the time
interval 50 < ωf t < 70, particles are accelerated longitu-
dinally and fill the trapped region of phase space. During
the acceleration phase, the particle velocities are randomly
scattered by the many waves excited, which lead to a quasi-
linear mixing in phase space [Fig. 7 (b)] by time ωf t = 75.
During remaining time, the nonlinear interactions lead to
more mixing and an eventual shift of the oscitation spectra
into the m = 0 mode and into long-wavelength modes with
kzrb ∼ 2 [Fig. 7 (c)]. The final distribution has the clear
signature of a nonlinear m = 0 mode with almost single-
mode excitation at wavelength λ 	 rw = 3rb and fre-
quency ω 	 ωf . This wave has a resonant longitudinal ve-
locity vw = ωrb/(kzrb) = vth

⊥ (ω/ωf )/(kzrb)/(ν̄/ν0) 	
0.83vth

⊥ = 83vth
||0 clearly visible in Fig. 7 (c), with a negli-

gible number of trapped particles.
Figure 8 show the z-averaged longitudinal velocity dis-

tribution plotted at times ωf t = 75 (red dashed line),
ωf t = 100 (red dotted line) and ωf t = 150 (solid blue
line). The velocity distribution becomes almost stationary
after time ωf t > 120, notwithstanding the obvious mode
structure that is still clearly evident in the phase-space con-
tour plot. Evidently, the shape of the longitudinal velocity
distribution is not Gaussian, but has a triangular shape in
Fig. 8.

CONCLUSIONS

To summarize, we have generalized the analysis of the
classical Harris instability to the case of a one-component
intense charged particle beam with anisotropic tempera-
ture. The instability is kinetic in nature and is due to the
coupling of the particles’ transverse betatron motion with
the longitudinal plasma oscillations excited by the pertur-

bation. For a long, coasting beam, the delta-f particle-in-
cell code BEST and the eighenmode code bEASt have been
used to determine detailed 3D stability properties over a
wide range of temperature anisotropy and beam intensity.
We have also used the delta-f particle-in-cell code BEST
to study the nonlinear evolution and saturation of the in-
stability. The nonlinear saturation is governed by longi-
tudinal particle trapping by a spectrum (not just a single
wave) of fast-growing waves with a broad band of longi-
tudinal wavenumbers and zero oscillation frequency. The
presence of many waves leads to the nesting and overlap-
ping of particle resonances in longitudinal phase space,
and as a consequence, to the fast randomization of the
trapped-particle distribution and longitudinal heating. The
nonlinear interactions lead to the shift of the waves spec-
trum into the long-wavelength region (m = 1 → m = 0
and kzrb → 2). The final longitudinal velocity distri-
bution is not Maxwellian and can be characterized by a
remnant temperature anisotropy (T||b/T⊥b 	 0.09), where
T||b ≡ mb < v2

|| >. A very interesting feature of the non-
linear saturation is the formation of a stable, longitudinal,
nonlinear BGK-like wave structure with a negligible num-
ber of trapped particles.
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