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Abstract

In this paper a new approach to the problem of synthe-
sis of beam lines is discussed. Usually this problem can
be overcome by the use of numerical simulation and opti-
mal control theory methods. But this results in sufficiently
great number of variable parameters and functions. Obvi-
ously, that this degrades quality of a modeling procedure.
The suggested approach is demonstrated on a problem of
a microprobe design problem. Essence of the problem is
that necessary to design a high precision focusing system
which satisfies some additional conditions. For solution of
this problem we use an algebraic treatment based on Lie
algebraic methods and computer algebra techniques. Us-
ing the symmetry ideology this approach allows rewriting
beam properties to enough simple conditions for control
parameters and functions. This leads a set of desired solu-
tions and show results in some most suitable form. More-
over, this approach decreases the number of variable pa-
rameters.

INTRODUCTION

It is known that different restrictions imposed on beam
lines essentially complicate the corresponding design pro-
cess. But these demands are mandatory and important for
realization of desired physical properties. Fortunately, the
most of these properties can be written in the form of some
symmetry restrictions.

In this paper a class of systems generating proton beams
of micron and submicron scale is considered. These sys-
tems are known as microprobes. The main demands for
similar machines are connected with terminal beam sizes.
But in some cases it is important to impose additional re-
strictions. The most of solution methods for similar prob-
lems are based on methods of the optimal control theory
or nonlinear programming (see, for example, [1], [2]). As
an example of a system we consider a beam line guaran-
teeing a round image for round diaphragms, which form-
ing the beam phase portrait (see fig. 1). In another words
the system should supply with preservation of the rotation
symmetry in the configurational space.

THE MICROPROBE CONFIGURATION

Let us consider the focusing system which consists on
four quadrupoles separated by drifts [3]. The preliminary
scheme of this system one can see on fig. 1.

Here Df1 and Df2 are round diaphragms with R1 and
R2 as radii, Fi, Di (i = 1, 2) are focusing and defocusing

Figure 1: The scheme of a quadruple microprobe.

quadrupoles correspondingly. Free field spaces have the
following length correspondingly: a — the fore-distance
(from the first diaphragm up to F1), sk (k = 1, 4) — dis-
tances between quadrupoles, g — the working (terminal)
distance (the length of terminal drift). The length of the
quadrupoles are Li, (i = 1, 4). These geometrical parame-
ters and the focusing forces of the quadrupoles – ki are the
aim of our investigation. The system will be considered as
optimal in linear approximation if these parameters will en-
sure the minimal beam measure on the target T (see fig. 1),
and some additional conditions will be fulfilled.

THE LIE METHODS AS BASIC
SOLUTION TOOLS

The above formulated property of the round symmetry
can be described with the help of the following condition:

Tα ◦N0 = N0
M(sT |s0)=⇒ Tα ◦NT = NT , (1)

where N0 — an initial beam image in the configuration
space {x, y}, NT — the corresponding image on the termi-
nal target in according to transformation M = M(sT |s0),
generated by the system, Tα — rotational transformation in
the transversal configuration space for an arbitrary angle α
around beam optical axis, s — the length measured along
the optical axis. The equality (1) leads us to the following
equality

Tα ◦M ◦ T −1
α = M, (2)

in other words the transformations Tα and M commute.
Let’s write the rotational transformation in the following
form: Tα = exp {α · Lrot}, where Lrot = −y∂/∂x +
x∂/∂y −y′∂/∂x′ + x′∂/∂y′ = X∗T∗∂/∂X — a gen-
erator for rotational transformation in the plane {x, y},
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X = (x, x′, y, y′)∗, J — a symplectic matrix of the form

J =
(

O −E

E O

)
.

The system propagator M(s|s0) is presented as a Lie
map. Let us denote Lsyst(s) a Lie operator for the our mi-
croprobe. For this purpose one can use both chronological
exponential operator

M(s|s0) = T exp




s∫
s0

Lsyst(τ)


 dτ

and routine exponential operator (so called Magnus presen-
tation) [4]

M(s|s0) = exp
{
LGsyst(s|s0)

}
,

where the new Lie operator LGsyst(s|s0) can be computed
for Lsyst(s|s0) using simultaneous analogue of the well
known CBH–formula.

Using the Lie operator for the beam line Lsyst(sT |s0),
we can rewrite our equality (2) in the form

exp
{
exp {α · Lrot} ◦ Lsyst(sT |s0)

}
= expLsyst(sT |s0).

As Lsyst is generated by the function Gsyst =
∞∑

k=1

G
syst
k (sT |s0)X[k], then we can write

exp {α · Lrot} ◦ Lsyst = L̃syst,

where L̃syst =
∞∑

k=1

(
X[k]

)∗ (
G̃

syst
k

)∗
∂/∂X. Using the

matrix formalism (see [5], [6]) for matrices generating cor-
responding Lie operators we can write

G
syst
k J

⊕k − JG
syst
k

⊕k
= 0.

For the linear case we have k = 1 and:

G
syst
1 J− JG

syst
1 = 0.

It is convenient for our aim to present the matrix G
syst
1 =

Gsyst(sT |s0) as a block matrix

G
syst
1 =

(
G11 G12

G21 G22

)
.

The form of J leads to the following equalities for block
matrices Gik:

G
11 = G

22, G
12 = −G

21. (3)

For the next calculations we should use the so called Mag-
nus presentation [3] using the matrix formalism. This al-
lows us to write the following equality for the beam line

matrix Gsyst(sT |s0) (here we introduce the notation P =
Psyst):

G
syst(sT |s0) =

sT∫
s0

P(τ)dτ−

− 1
2

sT∫
s0

τ∫
s0

{P(τ), P(τ ′)} dτ ′dτ+

+
1
6

sT∫
s0

τ∫
s0

τ ′∫
s0

({{P(τ), P(τ ′)}, P(τ ′′)} +

+ {{P(τ ′′), P(τ ′)}, P(τ)}) dτ dτ ′ dτ ′′ + . . .

In general, the matrix P(s) depends on a control vec-
tor function U(s). In the case of a quadrupole focusing
system the vector U(s) degenerates to a scalar function
u(s) = k(s), where k(s) is a generalized focusing force
of the microprobe. It is known, that there is the follow-
ing property for any continuous function f(t), measurable

on the interval [s0, sT ]:
sT∫
s0

f(t)dt =
sT∫
s0

f(sT − t)dt. This

leads to the following equation for the matrix P(U, s):
sT∫

s0

P (U(τ), τ) dτ =

sT∫
s0

P (U(sT − τ), sT − τ) dτ. (4)

Using (4) one can write

P
11(U(s), s) = P

22(U(sT − s), sT − s),

P
12(U(s), s) = −P

21(U(sT − s), sT − s),

where Pik — entering block matrices for the matrix P. We
should note, that these equalities are not enough for the
desired symmetry. For obtaining of additional conditions
we can use the special structure of the Magnus’s repre-
sentation. Namely we can use the following property: all
terms in the Magnus’s representation (with the exception
of the first term) are contain only commutators of the cor-
responding matrices. In our case of quadrupole symme-

try matrices Pkk have the form P11 =
(

0 1
−k(s) 0

)
and

P22 =
(

0 1
k(s) 0

)
. It is not difficult to prove, that we ob-

tain only two types of matrices under integral symbol:

f(k(s1), . . . , k(sm))
(

1 0
0 −1

)
,

g(k(s1), . . . , k(sm−1))
(

0 1
±k(sm) 0

)
.

(5)

Here si, i ≥ 1 integration variables for “inner integrals”.

Let U2 =
(

0 1
1 0

)
be a permutation matrix. Than one can

note (taking into account (4) and the form of the matrix
P11), that if there is an additional condition for G11:

U2G
11 −

(
G

11
)∗

U2 = 0.
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This equation leads us to the desired condition (4). At last,
using the exponential Magnus’s representation one can find
an additional condition for a linear matrix propagator R11:
U2R11U2 =

(
R11

)∗
, which (taking into account the above

given conditions) leads us to the following restriction
{
R

11
}

11
=

{
R

11
}

22
. (6)

As a result of the above pointed integral properties one can
obtain

k(s) = −k(sT − s) (7)

Eq. (6) and (7) are fully congruent to the desired axially
symmetry of the beam line.

COMPUTATIONAL EXPERIMENTS

We should note that the constructed conditions are ob-
tained starting from natural restrictions, imposed on target
beam, algebraic and functional properties of the following
matrix functions. The resulting equalities are equivalent to
two set of the equations:

L1 = L4, L2 = L3, s1 = s3 = s, s2 = λ,

k1 = −k4, −k2 = k3.

In this case eq. (6) is equivalent to an algebraic equation
for only two forces parameters k1, k2 and four geometrical
parameters s, λ, L1 and L2. In the next simulations we put
L1 = L2 = L.

The condition (6) defines in the parameter space so
called load curves, which have several branches and
enough intricate form. The corresponding relative loca-
tion of these curves depends on objective parameters (see,
for example, fig. 2). The other parameters a and g should
be founded using another conditions. For example, here
we can find the working distance g from the condition{
R11

}
12

= 0. This equality, as it is well known, cor-
responds to the “point-to-point” focusing condition. The
fore-distance a can be varied in some intervals depending
on experimenter possibilities. In particular, the increasing
of this parameter leads to uprating of the system demagni-
fication.

It should be noted that information on these curves al-
lows forming a special database. Similar information gives
a possibility to choose (using the corresponding interface)
a suitable control system, which satisfies the researcher’s
requirements. For creation of the load curves it is conve-
nient to use nonlinear programming methods, especially
in the case of systems with the larger number of lenses.
Indeed the usual nonlinear equation solution methods do
not lead often to correct results. In particular, we use for
this purpose a special method based on an ideology of the
predictor–correction approach.

After it the optimal points (corresponding to a mini-
mal beam measure) are searched. In the case of the lin-
ear approximation one can use the demagnification value

Figure 2: The examples of load curves:
a — λ = 0.005 m, s = 0.024 m, L = 0.2015 m;
b — λ = 0.2015 m, s = 0 m, L = 0.2015 m;

{
R11(sT )|s0)

}
11

. Here sT − s0 is a total length of the
system (sT − s0 = a + g + {the objective length}). Cor-
responding parameter values (with the additional auxiliary
data) are a database content.

The above suggested approach was applied to so called
rectangular (piece-wise) approximation of the control
fields. But it can be extended to an arbitrary dependence
of k(s) too. This can be realized using parameter presen-
tation or another type of description of the control function
k(s) (for example, in the some class of model functions).

The computational experiments demonstrated the high
sensitivity of the criterion R11 with respect to possible de-
flections of the system parameters. This allows indicating
zones of the increased sensitivity, that is an important in-
formation for designers of similar systems.

In the case of nonlinear approximation the designer can
study nonlinear aberrations contribution. In particular, the
spherical aberrations of the third order lead to both the ge-
ometry changes and the measure of the terminal beam im-
age. Necessarily, these distortions can be corrected using
octupole lenses (combined with quadrupole lenses or in-
serted into the system independently) [7].
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