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Abstract 
A precise model of an accelerator ring is crucial to 

achieve ultimate performance both in synchrotron light 
sources and high energy synchrotrons. Algorithms have 
been developed to calibrate the linear model of the ring. 
They have been successfully applied experimentally to 
determine and correct the linear optics of the machine. 
More recently the Frequency Map Analysis has been used 
to model also the non-linear optics. We propose here a 
technique based on the fit of non-linear spectral lines to 
recover the non-linear driving terms and to compensate 
the non-linear field errors around the ring. 

INTRODUCTION 
Recent developments in the modelling of the 

accelerator lattice have proven very useful to correct and 
improve the performance of synchrotron light sources [1, 
2] and high energy synchrotrons [3]. A well established 
technique is based on the analysis of the orbit response 
matrix to model or correct the linear optic of the machine. 
The LOCO algorithm [1] and equivalent packages have 
been used to correct the linear optic of various 
synchrotrons, including restoring the periodicity of the 
ring and linear coupling compensation. Another well 
known technique is based on the Frequency Map Analysis 
(FMA) [4] of the betatron oscillations and has been 
applied successfully at ALS [5] and more recently at 
Bessy–II [6]. This technique gives information about the 
non-linear behaviour of the ring and allows to test or 
control the non-linear part of the model. 

The frequency analysis of betatron motion can also be 
used to extract information on the resonance driving term 
that affect the non-linear dynamics of the particle beam. It 
has been shown [7] that each spectral line is proportional 
to a specific resonance driving term, at least in the first 
order of perturbation theory with the multipole gradients. 
In this article we show that the measurement of the 
spectral lines can be used to correct the non-linearities 
and to generate a model of the ring that reproduces the 
dynamics. This method is based on a χ2 fit of lattice 
element gradient to minimize the difference between the 
spectral content of the measured model and the ideal 
model. The spectral lines whose amplitude and phase 
should be controlled are selected according to which 
resonance appears to be most excited and the lattice 
parameters should be selected among those that excited 
the corresponding resonance, e.g. sextupole gradients 

error can be fitted by controlling spectral lines excited by 
third order resonances. 

Lastly, we will give an example of application of these 
techniques to analysis tracking data of a realistic model of 
the DIAMOND [8] lattice and we show that this method 
has beneficial effects on the dynamic aperture (DA) of the 
ring. 

THE METHOD 
According to the first order perturbative theory of non-

linear betatron motion, the beam oscillation in the 
horizontal plane can be written in normalized coordinates, 
as 
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where Ix and Iy are the horizontal and vertical action, ψx0  
and ψy0 are the horizontal and vertical initial phases, νx 
and νy are the  horizontal and vertical betatron tunes and 
the coefficients fjklm are the generating function terms. An 
analogous expression is valid for the vertical plane. These 
coefficients are related to the Hamiltonian coefficients 
hjklm according to  
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which are in turn proportional to the distribution of 
magnetic elements along the ring, e.g. the coefficients 
h3000, h1020, h1002 are all proportional to the sextupoles 
strength and are responsible for the excitation of the third 
order resonances (3,0), (1,2), (1,-2) respectively. The 
coefficients fjklm vary along the ring and their value at 
each BPM can be obtained from the spectral 
decomposition of the betatron oscillation signal using an 
enhanced FFT algorithm such as those developed in the 
NAFF [9] or SUSSIX [10] codes.  

For a particular resonance that needs to be compensated 
or that significantly differs from the s-dependence pattern 
expected from the model, one can build a target vector 
Ameas whose components are the amplitude and phase of 
the spectral lines computed at each BPM.  
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These coefficients will depend on the value of the 
particular magnetic elements that excite the 
corresponding resonances. If the resonance (3,0) is 
targeted, then the target vector to use is given by the 
amplitude and phase of the spectral line (–2, 0) which is 
excited by the sextupoles in the ring: 
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where Nbpm is the total number of BPMs in the ring. 
Each component of this vector will depend on the 
particular distribution of sextupoles in the ring, therefore 
we can write 
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where Sk is the strength of the k-th sextupoles and Nsext 
is the total number of sextupoles. 

This target vector is then compared with the same target 
vector computed from the ideal model Amodel. The 
distance between these two vectors 
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gives a measure of the discrepancy between the real 
accelerator and the model. This quantity can be 
minimized by a least square minimization procedure that 
involves fitting the strength of the magnetic element 
directly responsible for the excitation of that particular 
spectral line. To do so one has to built a sensitivity matrix 
that provides the jacobian of the dependence of the target 
vector A on the fit parameter chosen 
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The values of the fit parameter can be obtained 

inverting the relation 
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to  
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Since the matrix M will not be square in general, it can be 
inverted by means of an SVD decomposition. 
Furthermore the dependence of the target vector A with 
the fit parameter S is non-linear, therefore the SVD needs 
to be iterated until convergence is reached. 

The target vector A can be built using the amplitude and 
or the phase of several spectral lines according to the 
particular problem and the particular set of magnetic 

errors that we wish to control in the lattice. Notice that 
this method can be used also to control the linear part of 
the ring and to compensate β–beating and coupling [11]. 
With this respect, the outlined method can give 
complementary information to those obtained by a 
LOCO–like analysis of the linear lattice, the latter being 
based on closed orbit measurements rather than excited 
betatron oscillation measurements. At the same time it can 
provide information on the non-linear part of the ring 
model, giving complementary information to those 
obtained by the FMA, by looking at the whole spectral 
content of the betatron oscillations computed at all BPMs, 
rather than the tune dependence with amplitude computed 
at one BPM. Of course the simple relation between 
spectral line and resonance driving term (i.e. non-linear 
magnet gradients) is based on the perturbative analysis 
valid to the first order in the element gradient and breaks 
down when higher order become effective. 

APPLICATION TO THE DIAMOND 
LATTICE 

We report the application of the method to the tracking 
data obtained from a realistic model of the DIAMOND 
lattice. The lattice is a 24 cell Double Bend Achromat 
(DBA). Each cell has 7 BPMs, 10 quadrupoles and 7 
sextupoles: all quadrupoles and sextupoles have 
independent power supplies. The quadrupoles are 
arranged in 10 families and the sextupoles in 8 families. 
As a first example we introduced random errors on a 
chromatic sextupole family including 24 sextupoles. The 
errors in the sextupole strength are assigned from a 
Gaussian distribution with r.m.s. equal to 5% of the 
average sextupole strength in the ring (σ = 0.25 m–2), cut 
at three sigmas. The target vector used contains the 
amplitude of the spectral lines excited by the resonances 
(3,0) and (1, 2), i.e. 

 
),...,,,...,( )2,0()2,0(

1
)0,2()0,2(

1 NbpmNbpm AAAAA −−=  
 

In Fig. 1 we report the error values assigned to 24 
sextupoles and the reconstructed errors with the SVD 
procedure as outlined in the previous paragraph. 
 

 
Fig. 1: Random errors assigned to 24 sextupoles and 
reconstructed values with the SVD procedure 
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In this case the correction identified exactly all the errors 
assigned.  

We then assigned random errors to all the 168 
sextupoles in the ring. Using the same definition for the 
target vector we obtained the results shown in Fig. 2 

 
Fig. 2: Random errors assigned to 168 sextupoles and 
reconstructed values with the SVD procedure 
 

It is evident that now the algorithm does not identify all 
the assigned errors one by one, however the new 
distribution of sextupole strengths is able to correct 
effectively the behaviour of the spectral lines used in the 
target vector as shown in Fig. 3. 

 

 
Fig. 3: Spectral lines (-2,0) for the ideal lattice (top); for 
the lattice with added random errors in the sextupoles 
(middle); and (bottom) comparison of spectral lines (-2,0) 
of the  ideal (blue) and that lattice (red) with random 
errors and its corrections.  

 
The correction has some benefit also on the on-

momentum DA, as shown in Fig. 4. Before correction 
(top) the DA is 10 mm horizontally, 8 mm vertically, after 
correction (middle) it becomes 15 mm horizontally and 
10 mm vertically. Furthermore the diffusion rate indicated 
by the colour in the two graphs show that globally the 
corrected machine is more stable. The DA is not restored 

to the values of the bare lattice (bottom), indicating that 
the correction of a limited number of the spectral line is 
not necessarily fully correlated with the DA. 

 

 
Fig. 4: DA (on-momentum) before correction (top), after 
correction (middle) of the sextupoles and for the ideal 
lattice (bottom). 

CONCLUSIONS 
We presented a new technique for the analysis of the 

nonlinear part of the accelerator model based on an SVD 
fit of the spectral lines at all BPMs. The method looks 
promising and is effective in the tracking simulation of 
the Diamond model. Its effectiveness in dealing with real 
machine data still has to be proven: noisy data, BPM 
gains and decoherence of kicked beam oscillations will 
predictably limit the applicability of this technique. 
However, the method can be used in conjunction with 
LOCO and FMA to help building a realistic model of the 
ring, and give further insight in the behaviour of the linear 
and non linear dynamics of the beam. 
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