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Abstract

A general Hamiltonian that governs the beam dynam-
ics in an rf photoinjector is derived from first principles.
With proper choice of coordinates, the resulting Hamil-
tonian has a simple and familiar form, while taking into
account the rapid acceleration, rf focusing, magnetic focus-
ing, and space-charge forces. From the linear Hamiltonian,
beam-envelope evolution is readily obtained, which better
illuminates the theory of emittance compensation. Prelim-
inary results on the third-order nonlinear Hamiltonian will
be given as well.

HAMILTONIAN WITH ACCELERATING
REFERENCE PARTICLE

Electrons are rapidly accelerated in an rf injector, thus a
Hamiltonian with accelerating reference particle is needed
for perturbative analysis. Since commonly used Hamiltoni-
ans assume a reference particle with (quasi) constant mo-
mentum, we start from the basic relativistic Hamiltonian
for a particle of mass m and charge q moving under the
influence of an external electromagnetic field, i.e.,

H = qφ(X, t) +
√

m2c4 + [P− qA(X, t)]2 c2, (1)

where X is the laboratory-frame Cartesian coordinate of
the particle and P is the canonical momentum. The electro-
magnetic field is given by the scalar potential φ and vector
potential A. Time t is the independent variable.

For convenience we use the longitudinal position s of a
reference particle as the independent variable and replace t
with the time of the reference particle tr(s). Furthermore,
we normalize the momentum by mc. In other words, we
use X̂(s) = X(tr) and P̂(s) = P(tr)/mc as the canonical
variables. The new Hamiltonian is given by

Ĥ(X̂, P̂, s) =
1

ds/dt

H

mc
=

H(X,P, tr(s))
βr(s)mc2

. (2)

Normalizing the 4-potentials of the E.M. field by the 4-
momentum of the reference particle as

φ̂ =
qφ

γrmc2
, Â =

qA
βrγrmc

, (3)

then the Hamiltonian can be written as

Ĥ =
γr

βr
φ̂ +

1
βr

√
1 +

[
P̂− P̂ k

r Â
]2

, (4)
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where P̂ k
r = βrγr is the amplitude of the normalized kine-

matic momentum of the reference particle.
Using the new coordinate x = X̂− X̂r = X −Xr and

the new momentum p = P̂− P̂r = (P−Pr)/mc, a new
Hamiltonian can be obtained with the generating function
F2(X̂,p, s) = (X̂− X̂r) · (p + P̂r) as

H =
γr

βr
φ̂ +

1
βr

√
1 +

[
p + P̂r − P̂ k

r Â
]2

(5)

− X′
r · (p + P̂r) + x· P̂′

r,

where the prime means differentiation with respect to s.
To expand the square root into a series, we note that

P̂r − P̂ k
r Â = P̂k

r − P̂ k
r ∆Â, where ∆Â ≡ Â − Âr is

the difference in vector potential seen by a particle and the
reference particle, which should be small. Thus the terms
under the square root can be written as 1 + (P̂ k

r )2 + 2P̂k
r ·

(p− P̂ k
r ∆Â) + (p− P̂ k

r ∆Â)2, where the first two terms
are dominating and sum to γ2

r . Taking γ2
r out of the square

root, the rest becomes 1 + 2β2
r δ‖ + β2

r δ2, where

δ =
p

P̂ k
r

−∆Â =
Pk −Pk

r

P k
r

(6)

is the relative deviation in kinematic momentum. The sub-
script ‖ indicates the longitudinal component. This form

is suitable for Taylor expansion since both p/P̂ k
r and ∆Â

and thus δ are small quantities. Furthermore, when the mo-
mentum of the reference particle is not much larger than the
momentum deviation, i.e., δ is not small, βr will be small.
Expanding the square-root term up to the third order yields
1+β2

rδ‖+β2
r (δ2−β2

rδ2
‖)/2−β4

rδ‖(δ2−β2
rδ2
‖)/2+O(δ4).

Ignoring both the zeroth-order terms, which do not play
a role in the Hamiltonian equations, and the first-order
terms, which cancel out since the reference particle fol-
lows the first-order solution, the Hamiltonian reduces to
H = H2 + H3 + · · ·, where

H2 =
(

γr

βr
φ̂− P̂k

r ·Â
)

2

+
P̂ k

r

2

(
δ2
⊥ +

1
γ2

r

δ2
‖

)

2

(7)

H3 =
(

γr

βr
φ̂− P̂k

r ·Â
)

3

+
P̂ k

r

2

(
δ2
⊥ +

1
γ2

r

δ2
‖

)

3

− β2
r

2
(P̂k

r · δ1)
(

δ2
⊥ +

1
γ2

r

δ2
‖

)

2

. (8)

The integer subscripts indicate which order to keep.
To simplify the linear dynamics given by H2, we make a

linear canonical transformation generated by

F2 = x

[√
P̂ k

r p̂x −
1
2

√
P̂ k

r

√
P̂ k

r

′
x +

1
2
P̂ k

r (∂xÂx)rx

]

+(x ↔ y) + z

[
p̂z +

1
2
P̂ k

r (∂zÂz)r z

]
. (9)
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The variables are transformed as

x̂ =
√

P̂ k
r x =

√
βrγr x, (10)

px =
√

P̂ k
r p̂x −

√
P̂ k

r

′
x̂ +

√
P̂ k

r (∂xÂx)r x̂, (11)

ẑ = z, (12)

pz = p̂z + P̂ k
r (∂zÂz)r ẑ, (13)

and the y dimension is similarly transformed. Note that
x̂ and ŷ are the so-called reduced coordinates. Under the
conditions

(∂zA⊥)r = 0 and (∂yAx)r = − (∂xAy)r (14)

the new Hamiltonian reduces to

H2 =
γr

βr
φ̂2 − P̂k

r · Â2

+
p̂2

x

2
+


−

√
P̂ k

r

′′

√
P̂ k

r

+
1

P̂ k
r

∂2(P̂ k
r Âx)

∂s ∂x

∣∣∣∣∣
r

+ (∂xÂy)2r


 x̂2

2

+ (x ↔ y in the previous 2 terms)

+ (∂yÂx)r (x̂p̂y − ŷp̂x) +
βr

2γr
(x⊥ ·∇⊥Âz)2r

+
p̂2

z

2βrγ3
r

− p̂z

γ2
r

(x⊥ ·∇⊥Âz)r +
∂2(P̂ k

r Âz)
∂s ∂z

∣∣∣∣∣
r

ẑ2

2
. (15)

The advantages of this transformation become clear now.
The complication due to acceleration is reduced to a pseudo
focusing. The kinematic and potential terms are separated,
and the Hamiltonian resumes a familiar form. Note that,
until now, the treatment is generally valid under the condi-
tions in Eq. (14).

LINEAR FOCUSING AND HAMILTONIAN

A typical axisymmetric injector consists of TM01 accel-
erating field with vector potential (using the real part)

Arf
z =E0

∞∑
n=−∞

an

ω
J0(krnr)ei[ωt−kzn(s+z)+ϕ0] , (16)

Arf
r = iE0

∞∑
n=−∞

kzn

krn

an

ω
J1(krnr)ei[ωt−kzn(s+z)+ϕ0] (17)

and solenoid focusing field

Âmag =
(
−b̂s y, b̂s x, 0

)
. (18)

Here En is the amplitude of the space harmonic of in-
dex n and an = En/E0. ω is the rf frequency. ϕ0 is
the initial rf phase from the zero-crossing at the origin.
The longitudinal and transverse wave numbers of the n-
th space harmonic (kzn and krn, respectively) are given by
kzn = kz0 + 2πn/d and k2

rn + k2
zn = k2 = (ω

c )2, where d
is the period of rf structure. J0 and J1 are the Bessel func-
tions. r is the radial coordinate. The normalized solenoid
strength b̂s = (q/2βrγrmc)Bs(0, 0, s).

The internal space-charge force is modeled by an aver-
age static potential φsc

0 in the beam frame. In the lab frame,

φsc =γrφ
sc
0 , Asc

z =
βr

c
φsc, i.e., Âsc

z = φ̂sc =
qφsc

0

mc2
. (19)

Note that, using these relations, the space-charge contribu-
tion to the potential terms γr

βr
φ̂ − P̂k

r · Â in Hamiltonian

reduces to φ̂sc/βrγr, showing the well-known cancellation
of electro and magnetic forces in ultra-relativistic limit.

Under these forces, the linear Hamiltonian becomes

H2 =
p̂2

x + p̂2
y

2
+ K

x̂2 + ŷ2

2
− b̂s(x̂p̂y − ŷp̂x)

+
p̂2

z

2βrγ3
r

+

[
∂2(P̂ k

r Ârf
z )

∂s ∂z
− ∂2(P̂ k

r Ârf
z )

∂z2

]

r

ẑ2

2
, (20)

where the focusing strength K is given by

K(z, s) = −

√
P̂ k

r

′′

√
P̂ k

r

+ b̂2
s +

1
2(P̂ k

r )2
∂2

xφ̂sc
∣∣∣
r=0

+
1

P̂ k
r

∂2(P̂ k
r Ârf

r )
∂s ∂r

∣∣∣∣∣
r

− (∂2
r Ârf

z )r. (21)

Due to rotational symmetry, the angular momentum term
in H2 can be dropped with the understanding that the dy-
namical variables refer to the Larmor frame.

The last two terms in the focusing strength K are due to
the rf ponderomotive focusing. They contain fast oscilla-
tion of rf period that can be smoothed out as

K̄rf = 〈Krf〉+
〈[∫ s

ds̄
(
Krf− 〈Krf〉

)]2〉
=

Ê2
0

8
η. (22)

Here 〈 〉 means averaging over rf period. For standing
wave structure, Ê0 ≡ qE0/2βrγrmc2, E0 = 2E0, and
η(ϕ0) =

∑∞
n=0

(
a2

n + a2
n+1 − 2anan+1 cos 2ϕ0

)
[1]. The

total external electromagnetic focusing reduces to [2]

Kem � Ê2
0

[
η

8
+

(
cBs

E0

)2
]

. (23)

The pseudo focusing due to acceleration can be written as

−

√
P̂ k

r

′′

√
P̂ k

r

=
1
4

(
1 +

2
γ2

r

)(
γ′r

β2
rγr

)2

− γ′′r
2β2

rγr
. (24)

For synchronized acceleration, the energy gain per unit
length is approximately constant with

γ′r =
qE0 sin ϕ0

mc2
= βrγrÊ0 sin ϕ0. (25)

Thus the total external focusing strength becomes

Kext� (Ê0 sinϕ0)2
(
Ω2 + 1/4

)
, (26)

where

Ω2 =
1

sin2 ϕ0

[
η

8
+

(
cBs

E0

)2
]

.
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The linear space-charge defocusing can be written as [2]

Ks.c. = −Ig(z, s)
2IA

1
β3

rγ3
rσ2

r

, (27)

where Ig is the slice current whose s dependence is usually
ignored, IA is the Alfén current, and σr is the transverse
beam size. The total focusing strength K = Kext + Ks.c..

TRANSVERSE BEAM ENVELOPE

Ignoring the longitudinal dynamics, the transverse dy-
namics of each z-slice is governed by the simple Hamil-
tonian (p̂2

x+p̂2
y)/2+K(s, z)(x̂2+ŷ2)/2, whose behavior is

well known and the beam envelope is described by the stan-
dard Courant-Snyder parameters with the β-function satis-
fying

√
β ′′ + K

√
β − 1/

√
β 3 = 0. The normalized emit-

tance εn is conserved for each slice under this Hamiltonian.
The rms beam size in reduced variable is σ̂r =

√
εnβ =√

βrγr σr. Using σ̂r, the beta-function equation becomes
the beam-envelope equation σ̂′′r + Kσ̂r − ε2n/σ̂3

r = 0. In-
serting the above focusing strength we have

σ̂′′r +
(

γ′r
βrγr

)2(
Ω2 +

1
4

)
σ̂r −

(
γ′r

βrγr

)2
S

σ̂r
− ε2n

σ̂3
r

= 0,

(28)
where S = Ig/2IA(γ′r)

2. For a “space-charge dominated”
beam, which is considered here, the last emittance term
can be neglected. This equation is equivalent to the enve-
lope equation used in [2] and others. The difference is that
we are using the reduced coordinates, which significantly
simplifies the particle dynamics. When Ω and S are inde-
pendent of s, an obvious solution of the reduced envelope
equation is given by σ̂′′r = σ̂′r = 0 and

σ̂r = σ̂inv ≡
√

S

Ω2 + 1/4
. (29)

This is the so-called invariant envelope discussed obscurely
in [2]. See [3] for further discussions.

For small deviations from the invariant envelope, we can
linearize the envelope equation around the invariant enve-
lope with σ̂ = σ̂inv + δσ̂ and get

δσ̂′′ + 2(γ′/βγ)2(Ω2 + 1/4)δσ̂ = 0. (30)

Solving this equation, we obtain the solution of the enve-
lope equation around the invariant envelope as

σ̂ = σ̂inv +
√

γ

γ0

δσ̂(0)
cos θ

cos (u + θ) , (31)

σ̂′ = −
√

γ′2

γ0γ

(
ω2 +

1
4

)
δσ̂(0)
cos θ

sin (u + θ − θ0) , (32)

where ω =
√

2Ω2 + 1/4, δσ̂r(0) and δσ̂′r(0) are the ini-
tial envelope deviations, and θ0 = tan−1(1/2ω) and θ =
tan−1[ 1

2ω − γ0δσ̂′(0)
ωγ′δσ̂(0) ] are phase angles determined by the

initial values. Estimating the emittance with the commonly

used two-slice approximation ε = 1
2

∣∣ σ̂+σ̂′− − σ̂−σ̂′+
∣∣,

and assuming one slice is the rms-matched invariant en-
velope σ̂rms with σ̂′rms = 0 and the other is the slightly
mismatched edge slice oscillating around its own invari-
ant envelope according to the above expression, then ε =
1
2

∣∣∣ σ̂rmsσ̂
′
edge

∣∣∣ and we have

ε = σ̂rms

√
γ′2

γ0γ

(
ω2 +

1
4

) ∣∣∣∣
δσ̂edge(0)

cos θ
sin (u + θ − θ0)

∣∣∣∣

∝ 1
√

γ

∣∣∣∣ sin
(

ω ln
γ

γ0
+ θ − θ0

)∣∣∣∣ . (33)

It clearly shows that the correlated emittance is damped by√
γ and periodically returns to zero, which is the behav-

ior of an emittance-compensated beam [2]. The focusing
solenoid controls the emittance oscillation through ω.

THIRD-ORDER HAMILTONIAN

The third-order transverse Hamiltonian can be worked
out as H3 = HG + HC . The geometric part reads

HG =
φ̂sc

3

P̂ k
r

+ wg
(x̂2 + ŷ2)ẑ

2
−

(
∂2Âr

∂z∂r

)

r

(x̂p̂x + ŷp̂y)ẑ,

where

wg =
(P̂ k

r )′

P̂ k
r

(
∂2Âr

∂z∂r

)

r

−
(

∂3Ârf
z

∂z∂r2

)

r

.

The chromatic part reads

HC = − β2
r

2P̂ k
r

p̂z

[
(p̂2

x + p̂2
y) + wc(x̂2 + ŷ2)

]

+
β2

r

P̂ k
r

p̂z



√

P̂ k
r

′

√
P̂ k

r

(x̂p̂x + ŷp̂y)− (∂yÂx)r (x̂p̂y − ŷp̂x)


 ,

where

wc =



√

P̂ k
r

′

√
P̂ k

r




2

+ (∂xÂy)2r +
(∂2

r Âz)r

(P̂ k
r )2

.

In emittance-compensated guns, the quasi-laminar beam
propagates around the invariant envelope, on which there
are no transverse momenta, and thus most of these nonlin-
ear terms could become insignificant. More detailed analy-
sis will be reported elsewhere.

REFERENCES

[1] S.C. Hartman and J.B. Rosenzweig, Phys. Rev. E 47(3),
(1993) 2031.

[2] L. Serafini and J.B. Rosenzweig, Phys. Rev. E 55(6), (1997)
7565.

[3] Chun-xi Wang, “Comment on the invariant-envelope solu-
tion in rf photoinjectors,” Proceedings of The 32nd Ad-
vanced ICFA Beam Dynamics Workshop on Energy Recov-
ering Linacs, March 2005, to be published.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 1478


