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Abstract

Linear Non-Scaling FFAGs have, particularly for muon
acceleration, a unique type of longitudinal motion. This
longitudinal motion can be approximated by a parabolic
dependence time-of-flight on energy. This motion can be
described in dimensionless variables with two parameters.
I describe the relationship between the parameters and the
distortion of ellipses in longitudinal space.

INTRODUCTION

Fixed field alternating gradient (FFAG) accelerators are
machines which accelerate over a large range of energy
(generally a factor of 2 or more) without varying the mag-
net fields. Since the magnet fields don’t vary during ac-
celeration, they allow for very rapid acceleration. A new
type of FFAG, the linear non-scaling FFAG [1, 2], has been
of interest recently in several applications, particularly for
muon acceleration.

For the muon acceleration application in particular, the
acceleration must be so rapid that the RF frequency can-
not be varied to match the changes in the time of flight
with energy. To minimize the rate at which particles get
out of phase with the RF, the machine designed to be as
isochronous as possible. This leads to a time-of-flight
which is nearly parabolic in energy, as shown in Fig. 1.

This paper describes the longitudinal dynamics in a ma-
chine where the time of flight is exactly a parabolic func-
tion of energy, with the minimum of the parabola at the cen-
ter of the energy range, and the RF voltage is a sinusoidal
function of the phase. In the model, the RF voltage and
the time-of-flight advance are both distributed uniformly
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Figure 1: Time of flight as a function of energy.

around the ring. This system has been examined previ-
ously [3, 4]. A primary constraint on the design parameters
for these FFAGs will be the amount of longitudinal phase
distortion one can tolerate. This paper will quantify this
distortion and describe a method for computing it for this
system.

DESCRIPTION OF DYNAMICS

The equations of motion for our simplified system are

dτ

ds
= ∆T

(
2E − Ei − Ef

∆E

)2

− T0 (1)

dE

ds
= qV cos(ωτ), (2)

where τ is the time-of-flight relative to zero RF phase, s is
the distance along a reference curve which defines the co-
ordinate system, E is the particle energy, ∆T and T0 are as
shown in Fig. 1 and are times of flight per unit length along
the reference curve, Ei and Ef are the reference energy at
injection and extraction respectively, ∆E = Ef − Ei, q is
the particle charge, V is the average RF gradient, and ω is
the angular RF frequency. I simplify the system further by
changing to dimensionless variables

x = ωτ p =
E − Ei

∆E
u = sω∆T. (3)

In these variables, one accelerates from p = 0 to p = 1.
The equations of motion in these variables are

dx

du
= (2p− 1)2 − b

dp

du
= a cos x, (4)

where

a =
qV

ω∆T∆E
b =

T0

∆T
. (5)

These equations of motion arise from a Hamiltonian

1
6
(2p− 1)3 − b

2
(2p− 1)− a sin x. (6)

One cannot accelerate from p = 0 to p = 1 unless

1
3
− 2a < b < (3a)2/3. (7)

In particular, this requires that a > 1/24. Figure 2 shows
one example the phase space and a bunch being accelerated
in that phase space. Figure 3 shows the region of the a-b
parameters space where one can accelerate from p = 0 to
p = 1.
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Figure 2: Phase space for the case a = 1/12, b = 1/6,
showing separatrices (solid lines) and a bunch being accel-
erated from p = 0 to p = 1.
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Figure 3: Regions of the a-b parameter space where one
can (white) and cannot (grey) accelerate from p = 0 to
p = 1.

COMPUTATION OF DISTORTION

To compute the distortion of the longitudinal phase
space, I will use the Dragt-Finn factorization [5]. I will
find the map about an orbit that goes through the center of
the phase space, (x, p) = (0, 1/2). Due to the symmetries
of the problem, this map can be expressed to fifth order as

M = exp(2:e−:f2:f3:) exp(2:e−:f2:f5:) (8)

where

e:f5:e:f4:e:f3:e:f2: (9)

is the Dragt-Finn factorization of the map from (x, p) =
(0, 1/2) to p = 1, which is easily computed as described
in [5]. I wish to study the effect of M on an elliptically
symmetric distribution in phase space. If A = e:a2: trans-
forms a circularly symmetric distribution into the ellipti-
cally symmetric distribution in question, then I can instead

study the effect of

MC = exp(2:e:a2:e−:f2:f3:) exp(2:e:a2:e−:f2:f5:)
= e:g3:e:g5: (10)

on a circularly symmetric distribution.
The simplest quantity to compute is the emittance, which

is the square root of the determinant of the second-order
covariance matrix

Σ(u) =
∫

zzT ρ(z, u)d2z, (11)

where ρ(z, u) is the phase space density at the phase space
point z and independent variable u. If one has an initial
distribution which is circularly symmetric and has an ar-
bitrary dependence on J = zT z/2 (the usual action vari-
able), then MC increases the emittance by

3
4
〈J2〉(9g2

30 +5g2
31 +5g2

32 +9g2
33− 6g30g32− 6g31g33)

− 1
2
〈J〉2[(g31 + 3g33)2 + (g32 + 3g30)2], (12)

where

gn =
n∑

k=0

gnkxn−kpk. (13)

Note that this can be negative if 〈J2〉 < 4/3〈J〉2 (the phase
space density is uniform for equality). For a Gaussian dis-
tribution, 〈J2〉 = 2〈J〉2, and in general 〈J2〉 > 〈J〉2.
This result would hold even if there were a nonzero g4 in
Eq. (10).

At this point we have a procedure for computing the
emittance growth for a given a, b, and initial ellipse shape.
One generally would like to determine a and b based on the
design criteria for the system. Let us assume that the initial
ellipse shape can be controlled, and that our only design
criterion is that emittance growth is kept to some particular
value. In general, b is easily changed in an FFAG, by sim-
ply making small changes in the cell length or the RF fre-
quency. However, the choice of a has a major effect on the
design of the machine [6, 7]. Thus, the emittance growth
will be minimized over the initial ellipse orientation and b.
The result is shown in Fig. 4.

The emittance growth is proportional to 〈J〉2, as ex-
pected and depends strongly on the shape of the distribu-
tion. For small a, the emittance growth is proportional to
(a−1/24)−2. This is because for small a, the time (in u) to
get from p = 0 to p = 1 is proportional to− log(a−1/24),
and thus the matrix elements in e:f2: become proportional
to (a − 1/24)−1 during the integration, leading to f3 and
g3 also being proportional to (a− 1/24)−1 (see [5]). For a
below about 0.4, the minimum b is 1/3− 2a.

Since the emittance growth depends strongly on the
choice of distribution and can even be negative (an arti-
fact of using the second order covariance matrix), a bet-
ter performance criterion may be how far an initial el-
lipse deviates from being an ellipse after applying the

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

1533 0-7803-8859-3/05/$20.00 c©2005 IEEE



10
-3

10
-2

10
-1

10
0

a - 1/24

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

∆ε
/(

ε2 )

<J
 2

> = 2.0 ε2

<J
 2

> = 1.4 ε2

Figure 4: Change in ε =
√

det Σ(u) as a function of a.

map. Starting with the phase-space circle zi(J, θ) =
(
√

2J cos θ,
√

2J sin θ), one can choose a vector z0(J) and
a symmetric, unit-determinant matrix B(J) so as to mini-
mize

∆J(J) = sup
θ
|Jf (J, θ)− J | (14)

Jf (J, θ) = [zf (J, θ)− z0(J)]T B(J)[zf (J, θ)− z0(J)],
(15)

where zf (J, θ) is what zi(J, θ) maps to.
If one wants the ellipse center and shape to be indepen-

dent of J (so that the effective density at the core will not
increase from filamentation), z0 and B will be independent
of J . Thus, we find

Jf (J, θ)− J =

− 2
√

2J3[g31 cos3 θ + (3g30 − 2g32) cos2 θ sin θ

+ (3g33 − 2g31) cos θ sin2 θ + g32 sin3 θ]. (16)

Minimizing on the ellipse orientation and b, one obtains
curves for ∆J/(2J)3/2 which are similar to those in Fig. 4.
For small a, ∆J ∝ (a−1/24)−1, for the reasons described
above.

If one is only concerned with the outermost ellipse (for
instance, if one is not concerned with the core density but
only with total transmission), then z0 and B can be allowed
to depend on J . This extra freedom will make ∆J propor-
tional to (2J)5/2 and (a − 1/24)−3 for small a, with the
curve for ∆J/(2J)5/2 again being qualitatively similar to
those in Fig. 4. If there were g4 terms in Eq. (10), the solu-
tion would still be the same in the a → 1/24 limit, but the
g4 terms could potentially dominate for larger a. However,
the symmetry breaking is expected to be small (see Fig. 1
for a real example), so this computation in general will give
a good estimate.

Figure 5 shows one example of the accuracy of this com-
putation as a function of the desired accuracy. To produce
the plot, I chose a given a, computed the ellipse distor-
tion allowing J dependence in z0 and B, computed what
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Figure 5: Relative accuracy of the estimate as a function of
the desired ∆J/(2J), for a = 0.083.

J corresponds to a given ∆J/(2J), and tracked particles
on the optimal ellipse with that J . One sees that the esti-
mate is good for small ∆J/(2J), but quickly gets worse
once ∆J/(2J) gets sufficiently large. The ellipse gets so
distorted for large amplitudes that the power series repre-
sentation cannot give a good approximation to its shape.
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