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Abstract

The single-particle dynamics in a time-dependent focus-
ing field is examined. The existence of the Courant-Snyder
invariant is fundamentally a result of the corresponding
symmetry admitted by the oscillator equation with time-
dependent frequency. A careful analysis of the admitted
symmetries reveals a deeper connection between the non-
linear envelope equation and the oscillator equation. A
general theorem regarding the symmetries and invariants
of the envelope equation, which includes the existence of
the Courant-Snyder invariant as a special case, is demon-
strated. The symmetries of the envelope equation enable a
fast algorithm for finding matched solutions without using
the conventional iterative shooting method.

INTRODUCTION
The Courant-Snyder invariant for an oscillator with time-

dependent frequency is an important concept for accelera-
tor physics [1]. For an oscillation amplitude u(t) satisfying

ü+ κ(t)u = 0 , (1)

where κ(t) is the time-dependent frequency coefficient, the
Courant-Snyder invariant is given by [2]

I =
u2

w2
+ (ẇu−wu̇)2 . (2)

Here, w = w(t) is any solution of the envelope equation

ẅ + κ(t)w − 1
w3

= 0 . (3)

This classical result has been derived many times using
different methods. Initially, it was derived by Courant
and Snyder in 1958 [2] using the basic techniques for
Hill’s equation. It was rediscovered by Lewis [3] using
the asymptotic method developed by Kruskal [4]; Eliezer
and Gray [5] demonstrated a physical interpretation of the
invariant; a derivation using linear canonical transforma-
tion was given by Leach [6]; and Lutzky re-derived the re-
sult using Noether’s theorem [7]. A short review of vari-
ous derivation methods can be found in Ref. [8]. We note
that the basic concept of the Courant-Snyder invariant may
had appeared earlier in other formats. For example, Kul-
srud obtained two equations for w which are equivalent to
Eq. (3) [9]. The concept of an envelope function w and
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its notation, we believe, can be attributed to a paper by
Brikhoff [10], which predated the 1911 Solvay Conference,
where, according to commonly accepted history, the con-
cept of adiabatic invariant for a time-dependent harmonic
oscillator was first discussed by Lorentz and Einstein [11].

In this paper, we first re-examine the time-dependent
harmonic oscillator equation from the viewpoint of the
symmetry group G for Eq. (1). It is shown that the sym-
metry group for Eq. (1) is generated by an 8D Lie alge-
bra (infinitesimal generator) g, which contains the 3D sub-
algebra gCS that corresponds to the Courant-Snyder invari-
ant. The envelope equation appears naturally as the deter-
mining equation for gCS.We then investigate the symmetry
group of the envelope equation itself. It is interesting that
the determining equation for the Lie algebra gw of the sym-
metry group Gw for the envelope equation is an envelope
equation itself. A theorem regarding the symmetry and the
invariant for envelope equations is presented, together with
applications.

SYMMETRY GROUP FOR
TIME-DEPENDENT OSCILLATOR

EQUATION

A symmetry group can be used to reduce the order of
differential equations and to generate invariants [12]. We
search for vector fields v in (t, u) space

v = ξ(t, u)
∂

∂t
+ φ(t, u)

∂

∂u
(4)

as infinitesimal generators (Lie algebra) g for the symme-
try transformation groupG, which leaves Eq. (1) invariant.
The vector field v will induce a vector field in (t, u, u̇, ü)
space, i.e., the prolongation of v denoted by pr(2)v,

pr(2)v = ξ
∂

∂t
+ φ

∂

∂u
+ φu ∂

∂u̇
+ φuu ∂

∂ü
, (5)

φu ≡ φt + (φu − ξt)u̇− ξuu̇2 , (6)

φuu ≡ −3ξuu̇ü+ (φu − 2ξt)ü − ξuuu̇
3 (7)

+ (φuu − 2ξtu)u̇2 + (2φut − ξtt)u̇+ φtt .

The determining equation for v to be an infinitesimal gen-
erator for G is

pr(2)v [ü+ κ(t)u] = φuu + κφ+ ξκ̇u = 0 . (8)

Substituting the expression for φuu, we obtain

−ξuuu̇
3 + (φuu − 2ξtu)u̇2 + (3κξuu+ 2φut − ξtt)u̇
−(φu − 2ξt)κu+ φtt + κφ+ κ̇ξu = 0 . (9)
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Since Eq. (9) should be valid everywhere in (t, u, u̇) space,
the coefficients of u̇3, u̇2, and u̇ should vanish, i.e.,

ξuu = 0 , (10)

φuu − 2ξtu = 0 , (11)

3κξuu+ 2φut − ξtt = 0 , (12)

−κ (φu − 2ξt) u+ φtt + κφ+ κ̇ξu = 0 . (13)

Equations (10)-(13) can be used to find the solutions for ξ
and φ. After some algebra, we obtain

ξ = a(t)u+ b(t) , (14)

φ = ȧ(t)u2 + c(t)u+ d(t) , (15)

where a(t), b(t), c(t) and d(t) satisfy

ä + κa = 0 , (16)

d̈+ κd = 0 , (17)
...
b + 4κḃ+ 2κ̇b = 0 , (18)

ċ− b̈

2
= 0 . (19)

Equations (16)-(19) have eight degrees of freedom. There-
fore, the Lie algebra g is 8D, which is the maximum dimen-
sion that a second-order ODE can have for the Lie algebra
of its symmetry group. The sub-algebras generated by a,
d, and b are independent, and have the dimension of 2, 2,
and 3 respectively. From Eq. (19), we obtain

c =
ḃ

2
+ c0 . (20)

There is one degree of freedom associated with c0.
According to the basic result of Noether’s theorem, ev-

ery infinitesimal divergence symmetry corresponds to an
invariant [12]. Here, an infinitesimal divergence symmetry
is defined as a vector field satisfying

pr(2)v(L) + L
dξ

ds
=
dB(t, u)
dt

(21)

for some functionB(t, u). In Eq. (21), L is the Lagrangian
for Eq. (1). It can be shown that

pr(2)v(L) =
dA

dt
+ ξ

dL

dt
(22)

for some function A(t, u), from which it follows that I =
B − A − Lξ is an invariant if v is an infinitesimal diver-
gence symmetry. It can also be demonstrated that every
infinitesimal divergence symmetry belongs to the Lie alge-
bra g for the symmetry group G of Eq. (1). Since we have
obtained the Lie algebra g, to determine all of the invariants
of Eq. (1), it is only necessary to verify which subspace of
g consists of infinitesimal divergence symmetries. It turns
out that the infinitesimal divergence symmetries form a 5D
subspace g1 of the 8D Lie algebra g. It is given by

v = b(t)
∂

∂t
+

[
ḃ(t)
2
u+ d(t)

]
∂

∂u
. (23)

For the 2D sub-algebra v = d∂/∂u associated with d, it is
easy to show that the invariant is

I = uḋ− u̇d , (24)

which is the well-known Wronskian for linear equations.
For the 3D Lie algebra v = b∂/∂ξ + u(ḃ/2)∂/∂u associ-
ated with b, the invariant is found to be

I =

[
b̈

4
+
κ

2
b

]
u2 +

b

2
u̇2 − ḃ

2
uu̇ . (25)

We now show that this is indeed the Courant-Snyder invari-
ant. Let b = 2w2, Eq. (18) becomes

w
...
w + 3ẇẅ + 4κwẇ + κ̇w2 = 0 , (26)

which is equivalent to

3ẇh+ ḣw = 0 , (27)

h ≡ ẅ + κw − 1
w3

. (28)

In other words,

h =
ε− 1
w3

for an arbitrary constant ε. Thus, we obtain the envelope
equation

ẅ + κw − ε

w3
= 0 . (29)

In terms of w, the infinitesimal generator is

vCS = 2w2 ∂

∂t
+ 4wẇu

∂

∂u
, (30)

and the invariant in Eq. (25) becomes the familiar Courant-
Snyder invariant

I = (ẇ2 +
ε

w2
)u2 +w2u̇2 − 2wẇuu̇ . (31)

In this sense, we can refer to the symmetry group gener-
ated by the infinitesimal generator in Eq. (30) as Courant-
Snyder symmetry. The Lie algebra of the Courant-Snyder
symmetry is 3D because ε is an arbitrary constant in addi-
tion to the two arbitrary constants needed to specify a par-
ticular solution for w. Not surprisingly, Eq. (18) is exactly
the same as that for the well-known β function in Courant-
Snyder theory.

The 3D subspace in g complementary to g1 does not pro-
duce any invariant. The one degree of freedom associated
with c0 in Eq. (20) corresponds to

v = c0u
∂

∂u
,

which generates the symmetry group of the scaling trans-
formation ũ = exp(c0τ )u, which is obviously due to the
fact that Eq. (1) is linear. The sub-algebra of g generated
by a has 2 degrees of freedom, but currently it does not
seem to have any appreciable importance.
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SYMMETRY GROUP FOR THE
ENVELOPE EQUATION

We now apply the symmetry group analysis to the en-
velope equation [Eq. (29)] itself. The symmetry group Gw

for Eq. (29) should be a subgroup of the symmetry groupG
for Eq. (1), because the special case of Eq. (29) for ε = 0
is Eq. (1). Carrying out a similar procedure to that for de-
riving Eqs. (16)-(19), we obtain the Lie algebra gw for Gw

as

vw = 2w2
1

∂

∂t
+ 4w1ẇ1

∂

∂w
, (32)

where w1 satisfies another envelope equation

ẅ1 + κw1 − ε1
w3

1

= 0 (33)

with an arbitrary constant ε1. Further analysis shows that
vw is an infinitesimal divergence symmetry with the invari-
ant

I = ε
(w1

w

)2

+ ε1

(
w

w1

)2

+ (wẇ1 − ẇw1)
2 . (34)

We summarize the above result in the following theorem.

Theorem 1. For an arbitrary function κ (t) and w1, w2

satisfying

ẅ1 + κw1 =
ε1
w3

1

, (35)

ẅ2 + κw2 =
ε2
w3

2

, (36)

where ε1 and ε2 are real constants, the quantity

I = ε1

(
w2

w1

)2

+ ε2

(
w1

w2

)2

+ (w2ẇ1 − ẇ2w1)
2 (37)

is an invariant.

This result was obtained by Lutzky in a less general
form [7], and it can be straightfowardly verified by direct
calculation. The invariant in Eq. (37) allows us to solve for
the general solutions for w1 in terms of a special solution
for w2. Let q = w1/w2, we obtain

I = ε1
1
q2

+ ε2q
2 +

(
dq

dψ

)2

, (38)

ψ ≡
∫

1
w2

2

dt . (39)

Equation (38) can be solved for q in terms of ψ as

q2 =
I −√I2 − 4ε1ε2 sin

[−2
√
ε2(ψ + C)

]
2ε2

, (40)

or equivalently,

w1 = w2

(
I −√I2 − 4ε1ε2 sin

[−2
√
ε2(ψ +C)

]
2ε2

)1/2

.

(41)

Here, I and C are constants. Equation (41) recovers the
Courant-Snyder theory, Eqs. (1) and (3), as a special case
when ε1 = 0, and ε2 = 1. Another application of Theorem
1 and Eq. (41) is in the numerical solution of the envelope
equation [Eq. (3)]. For a periodic focusing lattice κ(t), it
is desirable to find matched solutions to construct the β
functions. Normally, this is done by a shooting method,
where Eq. (3) is solved numerically many times, iteratively.
Using Eq. (41) for the case where ε1 = ε2 = 1, we can
have a much more efficient algorithm, where Eq. (3) needs
to be numerically solved only once. First, we pick arbitrary
initial conditions forw(t = 0) = w 0 and ẇ(t = 0) = ẇ0 at
t = 0, and solve numerically forw from t = 0 to one lattice
period at t = T. Denote this solution as ws(t). Applying
Eq. (41), the general solution for wg is

wg = ws

(
I −√I2 − 4 sin [−2(ψ + C)]

2

)1/2

, (42)

ψ =
∫ t

0

1
w2

s

dt . (43)

By selecting I and C such that

wg(0) = wg(T ) and ẇg(0) = ẇg(T ) , (44)

we obtain the matched solution to Eq. (3) for a periodic fo-
cusing lattice κ(t) = κ(t+ T ).
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