
A C++ FRAMEWORK FOR CONDUCTING HIGH-SPEED, LONG-TERM
PARTICLE TRACKING SIMULATIONS

A. Kabel∗, Stanford Linear Accelerator Center, Stanford, CA 94025

Abstract

For the purpose of conducting parallel, long-term track-
ing studies of storage rings such as the ones descriped
in [3], [4], maximum execution speed is essential. We
describe an approach involving metaprogramming tech-
niques in C++ which results in execution speeds rivaling
hand-optimized assembler code for a particular tracking
lattice while retaining the generality and flexibility of an
all-purpose tracking code.

INTRODUCTION

Shifts in computer hardware technology over the last
two decades have had a profound impact on the speed
optimization of numeric algorithms. The advent of fast
data ans instruction cache and the advancement in floating-
point hardware have dramatically decreased the impact of
floating-point operations on total program performance and
increased the impact of cache locality and vectorizabil-
ity of the code. Improvements in compiler optimization
technology have rendered unnecessary common source
code optimizations, such as constant folding and common-
subexpression elimination, which are now best left to the
compiler.

In an ideal world, a high-performance particle tracking
code would consist of a source code for a tracking rou-
tine specific for a particular magnetic lattice. The com-
piler could then create an optimized machine code for that
lattice, utilizing its knowledge about floating-point hard-
ware, caching, and data dependency. While this is certainly
not practical, the C++ language’s templating mechanism,
which in practice is a code-rewriting and transformation
tool, allows one to get very close to this goal. In the sequel,
we describe how such metaprogramming techniques allow
one to obtain very high processing speeds from a general-
purpose tracking code; we also describe some of the prop-
erties of the code dumbbb.

THE TRACKING CODE dumbbb

The test field of these techniques is the tracking code
dumbbb, which grew from a simple kernel-driven tracking
code for the study of limetime behavior of the Tevatron
[3] to a general-purpose tracking code, roughly reflecting
MAD 8.x’s tracking capabilities. In the following, we de-
scribe some building blocks of the code.

∗ akabel@stanford.edu

LIGHTWEIGHT CLASSES

Vectors and Matrixes

The most basic object in our hierarchy is a (phasespace)
vector. It is a templatized class, unsing both base type and
dimension as a parameter. As the vector size is known at
runtime, loop optimizations by the compiler are facilitated.
The interface is modeled after the container classes of the
ANSI C++ library (formerly known as STL).

Matrices are similarly implemented, using data type,
row, and column number as templaet parameters. Flat ac-
cess to the matrix elements is possible in STL style, al-
lowing for generic copying/clearing/assigning. All usual
matrix operations are declared, as is matrix-vector multi-
plication.

Differential Algebraic Objects

Differential algebraic objects come in two flavors: as
generalized symmetric tensor objects, representing homo-
geneous or inhomeogeneous multivariate polynomials of
arbitrary dimension and degree and used for the evaluation
of power series provided externally (see below) , and as
small order polynomials (up to 3) used to determine Taylor
series from generic function definitions at compile time.

Fast Evaluation of Multivariate Polynomials

The evaluation of truncated power series on phase space
vectors can be used as an alternative to element-by-element
tracking, provided the order is high enough to mask the in-
trinsic non-symplecticity of the procedure. Metaprogram-
ming allows for an extremely efficient implementation of
this method.

Consider the set Hn
v of homogeneous polynomials of de-

gree n over a field F in v variables x1, . . . , xv . Each poly-
nomial hn

v ∈ Hn
v can be represented as an ordered pair

of polynomials: hn
v = (m, f),m ∈ Hn−1

v , f ∈ Hn
v−1 ,

where f is a polynomial comprising monomials in hn
v con-

taining x1, divided by x1, and where m comprises all other
monomials, and Hn

1 = F,H0
v = F, i. e., the coefficients

live on the leaves of the tree defined by the recursion rela-
tion (). The evaluation at a point (x1, . . . , xv) reads

hn
v (x1 . . . , xv) = x1m(x1, . . . xv) + f(x2, . . . , xv)

hn
1 (x1) = xn

1hn
1

h0
v(x1, . . . , xv) = h0

v

(1)

In the case of inhomogeneous polynomials, as we want to
evaluate truncated power series, we just evaluate an ele-
ment of Hn

v+1 at (x1, . . . , xv, 1). In this case, in the recur-
sion relation (1), hn

1 will always have an argument of 1 at

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

2565 0-7803-8859-3/05/$20.00 c©2005 IEEE

evaluation, so the exponentation operation in the prescrip-
tion for hn

1 (x) can be dropped. Similarly, one can also con-
sider a cut-off evaluation, which suppresses terms of order
higher than k in x1, . . . , xν .

The recursion relations for the coefficient tree, its eval-
uation at a point, and its cut-off evaluation can be im-
plemented directly in terms of templated classes in C++,
using F, n, v as parameters. The evaluation function is
implemented as an ’inlined’ function, i. e. the compiler
is requested to substitute an in-place compilation of the
called function at the place of a function call. Conse-
quently, a function call to the evaluation function, which
is recursively defined in terms of calls to other evalua-
tion functions, should be completely unwrapped as a sin-
gle arithmetic expression. Thus, the performance of hand-
optimized machine code should be attainable. This be-
havior, however, is dependent on the inlining strategy and
optimization capabilities of the compiler. Inspecting the
generated code for a typical compiler (we used GNU g++)
shows that indeed the evaluation function can be inlined
completely, i. e. no administrative overhead, such as func-
tion calls, index calculations, is generated; the generated
machine code for the evaluation function is a sequence of
load/store, addition, and multiplication operations.

To benchmark performance, we have implemented the
evaluation of the polynomials in terms of a table-driven
stack machine: it consists of a stack of intermediate results,
a table of coefficients c, and a v-tuple of variables x, and a
string of operations implementing the evaluation algorithm.
(In is interesting to note that the required stack depth is de-
pendent on the order of operations in the recursion relation
(1, this fact can also be observed in the compiler-generated
code for the templated version.)

Timing a test program which tracks 106 test particles
with 6 coordinates each through a densely populated Tay-
lor map, we obtained the following values using the GNU
C++ compiler, v3.3.2, and the Intel C++ Compiler, v7.1,
on an 1.8GHz Xeon processor and maximum optimization
settings for both stack machine (“SM”) and metaprogram-
ming (“MP”) versions; Under the assumption that the theo-
retically predicted number of additions and multiplications
is performed, and that the Xeon processor performs at a
peak floating-point-rate equal to its clock frequency, we get
the following efficiencies in table 1.

Order 7 8 9

Operations: 1716 3002 5004

gcc, MP 1.0 .96 n/a
icc, MP .38 .34 .35
gcc, SM .32 .32 n/a
icc, SM .30 .31 .30

Table 1: Tracking efficiency of different algorithms and
code generated by different compilers

We can observe a speed gain of about 3 (which is of
the same order as the gain of 4. . . 8 observed when com-

paring to to other, traditional codes[1]) for the GNU com-
piler. This is in agreement with our observation of com-
plete expression unrolling for this compiler. The numbers
are normalized to a sustained floating point performance of
Pmax = 1.08GFlops observed in the best case.

Determining Multivariate Power Series

Power series can be determined at compile time by aug-
menting objects of the type x+α1dx+α2dx∨dx+. . . with
overloaded operators for the conventional arithmetic oper-
ators, providing truncated power series arithmetic. Again,
these class (called Interval because it can be used to es-
tablish numeric bounds on calculated quantities) is tem-
plated by base type, order, and dimension. By providing
a set of traits classes templated by the transcendental func-
tions from <cmath>, the expressions for n-th order deriv-
atives of arbitrary functions can be determined at com-
pile time, allowing the compiler to optimize out common
subexpressions and trivial constant values. This allows us
fast tracking of particles with attached infinitesimal neigh-
borhoods, which can be used for the determination of Lya-
punov exponents.

Parsing and Lattice Manipulation

dumbbb will read a MAD 8.x conformant input file.
As the MAD syntax seems not to be formally defined,
the parser is restricted to the well-defined subset of files
generated by MAD’s SAVE command. The parser is re-
alized in terms of a bison grammar and a flex DFA
scanner. Global and local symbol lookup is realized in
terms of a stack of hashtables. All MAD definitions
are stored as complete parsetrees, expressed in terms of
reference-counted pointers to an abstract Evaluable class.
Specialization of these classes are MAD elements with
Evaluable member variables representing MAD element
attributes. Attributes can be altered or evaluated; elements
can be copied with a virtual Clone member function.

Beamline definitions can be expanded into a flat list of
MAD elements. Flat lists, in turn, can be subject to inser-
tions at arbitrary longitudinal positions, including within
elements, which are split in two sections. This is used in
dumbbbfor inserting beam-beam elements at positions ac-
cording to the currently examined bunch and cogging stage.

Elements

The flat list of elements acts as a ’class factory’ for track-
ing elements proper. Each MAD element will generate a
finite number of tracking elements, acting on a variety of
types (see below). The currently implemented elements
and their implementation methods are:

Drift Spaces. Either linear or first-order chromatic.
Quadrupoles. Either linear or first-order chromatic.

First-order chromaticity is implemented either by the ex-
act solution of the 3rd-order Hamiltonian or by a sequence
of thick-lens matrices and chromatic thin-lens kicks.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 2566

Sector Bends. Either linear or first-order chromatic.
Chromaticity is implemented as a sequence of thick-lens
matrices and kicks according to the 3rd-order Hamiltonian.

Multipoles, RF Cavities, Electrostatic Separators Imple-
mented by a sequence of, possibly chromatic, drift spaces
and thin-lens kicks.

Beam-Beam Elements, Tune Prints, Apertures, Coun-
ters. See below.

Kernels

In implementing the actual tracking elements, i. e. the
classes acting on particles during tracking, one is faced
with a dilemma: On the one hand, the action of a track-
ing element is generic and can, in most cases, be writ-
ten down as a simple formula which reads the same for
float,double,. . . or differential-algebraic objects; thus,
a templated transformation member function is called for.
On the other hand, the action has to be virtualized, as there
are different kinds of transformation, depending on the ele-
ment type. Both requirements are obviously incompatible,
as there are no virtual templated member functions in C++.

The solution lies in the creation of a ’fat interface’ class:

struct AbstractElement {

virtual void Xform(

ParticleBunch<double> &) const=0;

virtual void Xform(

ParticleBunch<long double> &) const=0;

...

virtual void Xform(

ParticleBunch<DiffAlg<1> >&) const=0;

...

virtual void Xform(

ParticleBunch<DiffAlg<3> >&) const=0;

};

This abstract base class can be created from an
Andriescu-style typelist and an automatic recursive instan-
tiator.

Loopers

Having created the abstract interface, one now needs to
create concrete classes. To do this, one creates a second
recursive instantiator, which, instead of creating the inter-
face, inherits from AbtractElement and, in each recur-
sion step, implements each Xform(ParticleBunch<T>
&) in terms of a generic-type Kernel<T>, which is injected
as a template parameter.

Usually, the action of a transformation element can be
serialized in terms of individual particles. Thus, a kernel
acting on a ParticleBunch can be written as a loop, act-
ing with a kernel<T> on phasespace vectors.

At the application level, all one needs to implement a
new element type is a class definition with a templated
member function xform(Phasespace<T> &) , e.g.

class QuadKernel {

public:

template<typename T>

xform(PhaseSpace<T> &v) { v = M * v; }

private:

const Matrix M;

....

};

A tracking element, with compiler-optimized member
functions looping over particles in a bunch and separately
rewritten for each data type known (by typelists) to the
framework will then be generated by simply writing

class Quad:

public TransformElem<Looper<QuadKernel> > {};

The advanteage of injecting loopers at instantiation
time lies in the fact that the compiler can optimize out com-
mon subexpressions and loop invariants; this would not be
possible by virtualizing on the particle level.

FlipLoopers and Blocking

Variations of this method are possible for differ-
ent circumstances: in some cases, it is advanta-
geous to write the single-particle kernel in terms of
in-out variables: xform(const Phasespace<T> &in,
Phasespace<T> &out), e.g., for matrix multiplications,
thus avoiding load-restore operations, which tend to be ex-
pensive on some platforms.

Results

The resulting code has been benchmarked and validated
against MAD 8, we observe a speed gain of up to an or-
der of magitude for element-by-element tracking. A speed
measurement for the Tevatron case is given in [4]. I is
worth stressing that direct lifetime calculation for the Teva-
tron, using element-by-elemnt tracking, now seem feasible.

ACKNOWLEDGMENTS

Work supported in part by the U. S. Department of En-
ergy under contract number DE-AC02-76SF00515.

This research used resources of the National Energy Re-
search Scientific Computing Center, which is supported by
the Office of Science of the U. S. Department of Energy
under Contract No. DE-AC03-76SF00098.

I wish to thank Y. Cai and T. Sen for helpful discussions.

REFERENCES

[1] Y. Cai (SLAC), private communication.

[2] American National Standard Institute, International Stan-
dard ISO/IEC 14882:1998(E) (1998)

[3] A. Kabel, Y. Cai, B. Erdelyi, T. Sen, M. Xiao, Proceedings
of the 2003 IEEE Particle Accelerator Conference (2003)

[4] A. Kabel et al., this conference

[5] K. Hirata, H, Moshammer, F Ruggiero, Part. Acc. 40,205
(1993)

[6] M. Bassetti, G Erskine, CERN ISR TH80-06 (1980)

[7] F. Matta and A. Reichel, Math. Comp. 25, 339 (1971)

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

2567 0-7803-8859-3/05/$20.00 c©2005 IEEE

