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Abstract

Through determination of all quadrupole strengths and
sextupole feed-downs by fitting quantities derivable from
precision orbit measurement, one can establish a virtual
accelerator that matches the real accelerator optics. These
quantities (the phase advances, the Green’s functions, and
the coupling ellipses tilt angles and axis ratios) are obtained
by analyzing turn-by-turn Beam Position Monitor (BPM)
data with a model-independent analysis (MIA). Instead
of trying to identify magnet errors, a limited number of
quadrupoles are chosen for optimized strength adjustment
to improve the virtual accelerator optics and then applied
to the real accelerator accordingly. These processes have
been successfully applied to PEP-II rings for beta beating
fixes, phase and working tune adjustments, and coupling
reduction to improve PEP-II luminosity.

INTRODUCTION

We consider all quadrupole strengths and sextupole feed-
downs as well as all BPM gains and BPM cross-plane cou-
plings as variables to fit the Local Green’s functions [1] [2]
and the phase advances [3] calculated from a lattice model
to those derived from orbit measurement using a model-
independent analysis (MIA) [4]. The fitting process is with
an SVD-enhanced Least Square fitting technique [5] that
is efficient enough for a system of tens of thousand con-
straints with thousands of variables. Once the lattice model
is fitted to the orbit measurement, we would confirm if it
matches the real accelerator in linear optics by checking the
coupling eigen ellipses [6] between those calculated from
the fitted model and those derived from the orbit measure-
ment to see if they are automatically matched at the double-
view BPM locations before we call this fitted lattice model
the computer virtual accelerator.

Once the virtual accelerator is obtained, instead of com-
paring it to the ideal lattice model for finding and adjusting
one or two magnets with noticeable differences, we would
go on with this virtual accelerator to search for an easily-
approachable better-optics model by pre-selecting and fit-
ting a group of limited number of quadrupole strengths and
then create a machine operation knob for practicing the cor-
responding quadrupole strengths adjustment in the real ac-
celerator. These procedure has been successfully applied
for PEP-II optics improvement. Noticeable achievement
has been that MIA has helped PEP-II achieve its breaking
record peak luminosity above 6.5X1033cm−2s−1 in 2003
by bringing the LER working tune to near half integer and
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simultaneously fixing the beta beat and improve the lin-
ear coupling, which would, otherwise, be difficult without
MIA because of the strong LER coupling effect.

We now briefly describe the procedures.

A COMPLETE SET OF DATA
ACQUISITION

The linear geometric optics is determined if one gets 4
independent linear orbits. This can be clearly shown by the
obtainable linear mapping, Z b = RabZa, and so Rab =
ZbZa−1, where the 4-by-4 matrix, Z a = [�za

1 , �za
2 , �za

3 , �za
4 ],

represents 4 independent linear orbits at location a, and
Rab is the linear map from location a to location b. There-
fore, a complete set of data must be able to provide the
extraction of 4 independent orbits.

Unlike linacs where there is often enough incoming jit-
ter in the beam to measure and identify betatron modes,
in the rings, to offset radiation damping, the most eco-
nomic process for such data acquisition would be through
two orthogonal resonance excitations, one at the horizontal
(eigen-plane 1) and the other at the vertical (eigen-plane 2)
betatron tunes, and then take and store buffered BPM data.
Since a betatron motion has two degrees of freedom (the
phase and the amplitude), each excitation would generate
a pair of conjugate (cosine- and sine-like) betatron motion
orbits from zoomed FFT after removing non-physical BPM
data. Therefore, a complete 4 independent linear (X and
Y) orbits can be extracted from the two eigen-mode excita-
tions. A typical set of such orbits for PEP-II LER is shown
in Figure 1. One can clearly see the linear coupling in the
IR region but not at IP where BPM sequence numbers are
around 160.

FITTING CONSTRAINTS

For linear optics fitting, while it is clear that all
quadrupole strengths and sextupole feed-downs as well as
the BPM linear gains and cross couplings should be used as
a complete set of orthogonal variables, it is somewhat flex-
ible to choose the fitting constraints as far as all degrees of
freedom are implicitly contained and the degeneracies can
be well taken care of.

A linear symplectic map (matrix) contains 10 degrees
of freedom [7] as one can also count that there are 10 co-
efficients in a second-order homogeneous polynomial in
its Lie transformation. Therefore one must ultimately find
10 non-parallel (not necessarily orthogonal) quantities for
each BPM location, which are derivable from the 4 inde-
pendent orbits that contains only positions without conju-
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Figure 1: Four independent orbits extracted from PEP-II
LER BPM buffer data taken on January 13, 2004. The first
two orbits (x1, y1) and (x2, y2) are extracted from beam
orbit excitation at the horizontal tune while the other two
orbits (x3, y3) and (x4, y4) are from excitation at the verti-
cal tune.

gate momenta. What we have for these 10 degrees of free-
dom (DOF) at each BPM are phase advances (2 DOFs),
one-turn Green’s functions (4 DOFs), and eigen-plane el-
lipse tilt angles (2DOFs) and axis ratios (2 DOFs) [6]. Note
that the last 4 quantities are also a complete subset for the
linear coupling.

However, for better convergent process, we would con-
sider more constraints by taking much more Green’s func-
tions between two BPMs. Note that the number of Green’s
functions between two BPMs are basically unlimited. This
is the key leading to success of this program. For faster
fitting speed without losing accuracy, we usually use more
Green’s functions but leave the eigen-plane ellipse tilt an-
gles and axis ratios out of the fitting process. They are
used for after-fitting check as they have to be automatically
matched between the fitting model and the direct measure-
ment to guarantee that the fitted result is all right.

Given all quadrupole strengths and sextupole feed-
downs, calculations for the above quantities from the lattice
model are trivial. Their corresponding derivations directly
from orbit measurement are discussed below.

Phase advances

One can derive the orbit betatron phase at each BPM lo-
cation by simply taking the arctangent of the ratio of the
imaginary part to the real part of the resonance excitation
FFT mode [3]. Phase advances between adjacent BPMs
can then be calculated by subtraction. Note that the ratio of
the imaginary part to the real part of the FFT will cancel the
linear BPM gains but not the BPM cross couplings. There-
fore the phase advances among BPMs are repeatedly cal-
culated during the Least Square fitting process as the BPM
cross couplings and BPM gains are updated to correct the
linear orbits.

Linear Green’s functions

The linear Green’s function are simply the
Rab

12, R
ab
34, R

ab
14, R

ab
32 of the linear transfer matrix be-

tween any two BPMs labeled as a and b. They are given in
the data measurement space as [1]

(xa
1xb

2− xa
2x

b
1)/Q12 + (xa

3x
b
4− xa

4x
b
3)/Q34 = Rab

12 , (1)

(xa
1yb

2 − xa
2yb

1)/Q12 + (xa
3yb

4 − xa
4yb

3)/Q34 = Rab
32 , (2)

(ya
1xb

2 − ya
2xb

1)/Q12 + (ya
3xb

4 − ya
4xb

3)/Q34 = Rab
14 , (3)

(ya
1yb

2 − ya
2yb

1)/Q12 + (ya
3yb

4 − ya
4yb

3)/Q34 = Rab
34 , (4)

where Q12 and Q34 are the two invariants relating to
the two resonance excitation amplitude, (x1, y1), (x2, y2),
(x3, y3), (x4, y4) are the 4 independent linear orbits, and
R12,R32,R14,R34 are given as

Rab
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12g
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xyR
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where gx’s, gy’s are the BPM gains, and θxy’s
and θyx’s are the BPM cross-coupling multipliers [1].
Rab

12, R
ab
34, R

ab
32, R

ab
14 are the Green’s functions between any

two BPMs labeled as a and b of the machine.

Coupling ellipses

For each double-view BPM, one can trace the MIA ex-
tracted high-resolution real-space orbits to obtain a cou-
pling ellipse in real space for each resonance (eigen) ex-
citation. Therefore, one can calculate coupling ellipse tilt
angles and axis ratios for all double-view BPMs in each of
the two eigen planes [6]. The tilt angle of the coupling el-
lipse at IP for the horizontal eigen plane is very close to the
real tilt angle of the beam at IP. One can also calculate these
corresponding coupling parameters from the linear map of
a lattice model. Therefore, these quantities can be used as
part of the fitting parameters. However, in most cases, we
do not fit for the coupling ellipses derivatives, but reserve
them for after-fit check. They automatically match - a nec-
essary condition to make sure the fitting is all right. Shown
in Figure 2 are optics characteristics plots for a well-fitted
LER.

APPLICATION TO PEP-II, AN EXAMPLE

PEP-II LER is a strong coupled accelerator. Without
dealing with the linear coupling, it is difficult to fix the
LER beta beat. Before MIA was fully developed, with-
out MIA, we have several unsuccessful attempts trying to
bring the LER horizontal working tune to near half integers
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Figure 2: A typical plot to show a virtual accelerator lin-
ear optics characteristics (red color) compared with those
of the designed lattice (blue color), except the last 4 plots
which compare the coupling ellispe parameters calculated
from the fitted virtual accelerator to those from measure-
ment. In this case, it is PEP-II LER on January 13, 2004.
The top two plots show the two eigen beta functions in the
vicinity of IP followed by two plots that show the beta func-
tions for the whole machine and then the beta function plots
at IP, which show the β∗’s and the waist. The next two plots
show the phase-space coupling angles followed by 4 plots
that show the coupling eigen-plane ellipse tilt angles and
axis ratios at IP. The coupling ellipse parameters, the tilt
angles and the axis ratios, for all double-view BPMs are
compared in the last (bottom) 4 plots for those from mea-
surement and those calculated from the virtual accelerator,
which show a very good match - a necessary condition for
a good fitting.

because of strong beta beat. Once MIA was fully devel-
oped in 2003, we successfully use MIA to bring the LER to
a near half integer working tune and simultaneously fixed
the beta beat by dialing in a MIA generated knob that in-
volved adjustment of the linear trombone quadrupoles and
the 4 global skews. The reason MIA was successful is be-
cause MIA takes care of the complete set of linear optics
characteristics. The linear coupling is fully treated with-

out any discount. Success of bringing PEP-II horizontal
working tune to near half integer improves the beam-beam
effects and subsequently, we have a breaking-record PEP-
II luminosity above 6.5X1033cm−2s−1 after getting LER
and HER matched at near half integer working tunes.

SUMMARY

MIA has been developed to a mature practical stage
for offering countable computer virtual accelerator that
matches the real accelerator linear optics. It has been suc-
cessfully applied to PEP-II LER and HER for fixing the
beta beats, adjusting the working tunes to near half integers,
and improving the linear coulings. Noticeable contribution
to PEP-II machine development has been that MIA has
helped PEP-II achieve its breaking record peak luminos-
ity above 6.5X1033cm−2s−1 in 2003 by bringing the LER
working tune to near half integer and simultaneously fix-
ing the beta beat and reducing the linear couplings, which
would, otherwise, be difficult without MIA because of the
strong LER coupling effect.
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