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Abstract

The transformation of a round, angular-momentum-
dominated electron beam produced in a photoinjector into
a flat beam using a transformer composed of three skew-
quadrupoles [1] has been developed theoretically [2, 3] and
experimentally [4]. In this paper, we present numerical and
analytical studies of space-charge forces, and evaluate the
corresponding limits on the ratio of vertical-to-horizontal
emittances. We also investigate the sensitivities of flat-
beam emittances on the quadrupole misalignments in each
of the six degrees of freedom.

SPACE-CHARGE EFFECTS

We will first present the space-charge effects in flat-
beam generation as seen in simulations. An analytical
approach then follows, where we estimate the emittance
growth caused by the nonlinear space-charge force and the
resulting limitation on flat-beam production.

Simulations

Modeling the beamline of the Fermilab/NICADD1 Pho-
toinjector Laboratory (FNPL) (see Figure 1) with the pa-
rameters listed in Table 1, ASTRA [5] simulations were
performed with the space-charge force on and off, and the
quadrupole strengths are adjusted accordingly in each case.
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Figure 1: Schematic drawing of FNPL beamline.

An emittance ratio larger than 1200 is obtained with the
space-charge off, compared to ∼ 300 with space-charge
on; see Figure 2.

Apart from space-charge on/off from start to end, an-
other interesting case is having the space-charge on only
prior to the round-to-flat transformer, as shown with the
dash-dot line in Figure 2. We see it is closer to the case
where space charge is on all the way. It is thus reason-
able to conclude that space-charge effects are more impor-
tant prior to than during and/or after the transformer. This
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Table 1: FNPL machine parameters used in simulation.

parameter value units
rms laser pulse (Gaussian) length 3 ps
thermal energy at cathode 0.75 eV
magnetic field on cathode B0 ∼935 Gauss
rms beam size on cathode σc 0.80 mm
bunch charge Q 0.50 nC
gun rf phase 25 degree
gun peak gradient 35 MV/m
booster cavity peak gradient 25 MV/m
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Figure 2: Effect of space charge on the emittance ratio.

correlates to the space-charge force being proportional to
1/γ2, since during/after the transformer, the beam energy
already reached its maximum in the beamline (∼ 17 MeV).
Space charge is especially important in the rf gun, where
kinetic energy increases from almost zero at the photocath-
ode to about 4 MeV at the gun exit.

Analytics

In this Section we will discuss space-charge induced
emittance growth in the rf gun and its corresponding influ-
ence on flat-beam generation. Take, as a model, the space
charge force to be

Fr ∝ ar + br3, (1)

or in Cartesian coordinates,

Fx ∝ ax + bx(x2 + y2),

Fy ∝ ay + by(x2 + y2).
(2)
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The change to the dimensionless momentum px =
γvx/c caused by Fx is

∆px =
1

mc

∫
Fxdt ≈ 1

mc2

∫
Fx

β
dz, (3)

where m is electron rest mass, c is the speed of light in
vacuum, β = v/c and γ is the Lorentz factor. Since the
space-charge force is most significant during a short inter-
val from the cathode surface, we can assume that the elec-
tron’s transverse coordinates remain constant in the rf gun,
and ∆px and ∆py can be written as

∆px = ax+ bx3 + bxy2, ∆py = ay + by3 + bx2y. (4)

The initial phase-space coordinates of the angular-
momentum-dominated beam are given by [3]

X =
[

x
px − κy

]
, Y =

[
y

py + κx

]
, (5)

where κ = B0/(2mc), B0 is the axial magnetic field on
the cathode. Adding Eq. (4) to the second rows of Eq. (5)
respectively, and assuming that 〈xpx〉 = 〈xpy〉 = · · · = 0
(“〈 〉” meaning to take the average over the beam distribu-
tion), the beam matrix is

Σn,sc =
[

εscTsc LJ
−LJ εscTsc

]
, (6)

where

ε2
sc = ε2 + b2Λ, Λ = σ2σ6 + σ4σ4 − σ8 − σ2

4 . (7)

Here σ2 = 〈x2〉 = 〈y2〉, L = κσ2, ε = σ
√

px
2 + (κσ)2,

σn = 〈xn〉, Tsc is a 2×2 matrix whose determinant is one,
and J is the 2× 2 unit symplectic matrix given by:

J =
[

0 1
−1 0

]
. (8)

Immediately we see from Eq. (6) that the uncorrelated
emittance increases due to the nonlinear space-charge force
through parameter b; however the parameter L which is re-
lated to the beam angular momentum remains unaffected.
This can be understood since the space-charge force, lin-
ear or not, is in the radial direction, hence preserves the
cylindrical symmetry and thus conserves the angular mo-
mentum.

The normalized flat-beam emittances change corre-
spondingly from ε± to ε±sc:

ε± =
√

ε2 + L2 ± L ⇒ ε±sc =
√

ε2
sc + L2 ± L. (9)

Next, we work out the case for a long beam whose trans-
verse profile is Gaussian. Write the charge density as:

ρ(r) = ρ0e
− r2

2σ2
r ≈ ρ0(1− r2

2σ2
r

+ · · · ), (10)

where ρ0 = Q/(2πσ2
r lz) is the normalization factor, with

Q and lz being the bunch charge and length. Only the first

two terms of the expansion are considered in the following
discussion. In reality, the transverse profile is taken to be a
truncated Gaussian, and we can write the charge density

ρ(r) = ρ0(1− b∗
r2

2σ2
r

), (11)

where the factor b∗ can be determined from the beam dis-
tribution. In Figure 3, the dots pertain to the observed ρ(r)
for a typical beam used in flat-beam experiments, and the
solid line is a fit in the form of Eq. (11); b∗ is found to be
0.3 in this case.
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Figure 3: A typical beam density profile along radial direc-
tion as observed experimentally (dots) at the photocathode.
The solid line is a fit in the form of Eq. (11) for the circled
dots.

From Gauss’s law, we have the radial electric field given
by

Er =
ρ0r

2ε0
(1− b∗

r2

4σ2
r

) (12)

From Amperes law, we have the magnetic field Bθ =
(µ0vrρ)/(2) = Erβ/c. The Lorentz force is then given
by:

Fr =
eEr

γ2
. (13)

Upon substituting Eqs. (12) and (13) into Eq. (4), we
have:

∆px =
I

I0

I
σ2

r

x(1− b∗
x2 + y2

4σ2
r

), (14)

where I =
∫

dz/(βγ2) and I0 is the Alfvén current for
electrons. To calculate the integral I [6], let’s assume the
energy gain is linear, i.e., dγ/dz = (γf − 1)/zf where γf

and zf the Lorentz factor and z coordinate at the gun exit;
we have

I =
zf

γf − 1

∫
1

βγ2
dγ =

zf

γf − 1
(π

2
− sin−1 1

γf

)
. (15)

In the case of a (n + 1
2 )-cell rf gun, we have zf = (n +

1
2 )λ/2, where λ is the rf wavelength.

Eq. (14) is of the form Eq. (4) with the following identi-
fications:

a =
I

I0

I
2σ2

, b = −b∗
I

I0

I
16σ4

, (16)
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where we used σ2
r = 2σ2 for a cylindrically symmetric

beam.
From the distribution given by Eq. (10), we obtain

Λ = 8σ8. (17)

Finally, substituting Eq. (16) and Eq. (17) into Eq. (9),
we get

εsc =

√(
b∗

I

I0

I
4
√

2

)2

+ ε2. (18)

Take the following typical parameters at FNPL: b∗ =
0.3, I = 35 A, γf = 9, zf ≈ 0.17 m for a 1.5-cell
1.3 GHz rf gun, normalized thermal emittance ε = 1 µm.
From Eq. (18), we obtain εsc = 3.53 µm. If L = 20 µm,
due to the nonlinear space-charge force, the smaller of the
two transverse flat-beam emittances increases from 0.02 to
0.30 µm, and the corresponding emittance ratio drops from
2000 to 130.

In reality, particle transverse positions change under the
space-charge and external electromagnetic forces, and the
energy gain is not linear along z-axis, so that the beam dy-
namics is much more complicated. Nevertheless the dis-
cussion here shows that the emittance growth caused by
nonlinear space charge in the rf gun is the major limiting
factor on achieving a flat beam with very small emittance
and high emittance ratio.

BEAMLINE ERRORS

We numerically studied the effects on flat beam ratio
caused by the quadrupole alignment error. This includes
the rotational errors around x, y and z axes, and the dis-
placements dx, dy and dz of each quadrupole; see Fig-
ure 1.

The rotation angle around the longitudinal axis should
be 45◦ for a skew quadrupole. In Figure 4 (a), we scan
the tilt angle of each quadrupole by ±2◦ in simulation.
The emittance ratio is more sensitive to the first and sec-
ond quadrupole tilt angles, and much less sensitive to the
third one.
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Figure 4: Effects of the quadrupole rotation angles around
longitudinal and horizontal axis on the emittance ratio.

In Figure 4 (b), we scan the angle around the horizontal
axis (pitch) by ±2◦ using ASTRA . The maximum emit-
tance ratio drop is less than 4%. Similar results are found
for the rotation angle around vertical axis (yaw).

Finally we scan quadrupole center locations in each axis
by a couple of millimeters. The effect on emittance ratio is
comparable to the misalignment in pitch and yaw angles.
Usually the quadrupole centers are aligned within 1 mm
mechanically.

From simulations shown above, we see that the emit-
tance ratio is neither very sensitive to pitch and yaw ro-
tation, nor to the quadrupole center displacements. Some
misalignments, such as center location in z-axis, can be
compensated by adjusting the quadrupole strengths. Fur-
thermore, experimentally we do beam-based alignment by
using a couple of steering magnets to center the beam on
the electromagnetic axes of the quadrupoles. Therefore,
the mechanical misalignment of the quadrupole centers, or
pitch and yaw angles could be compensated.

However, the emittance ratio is sensitive to errors in the
tilt angle of the first two skew quadrupoles. Experimen-
tally, the precision of the alignment of the quadrupole an-
gles is better than ±0.25◦.

CONCLUSIONS

We have investigated analytically the space-charge ef-
fects in the rf gun area. An uncorrelated transverse emit-
tance growth is estimated from the non-linear space-charge
force, given the initial drive laser spot profiles. The achiev-
able flat-emittance ratio decreases from orders of thou-
sands to hundreds as a result of the un-correlated emittance
growth in rf gun. Therefore, the space charge in the gun
is the dominant limiting factor for flat-beam production.
The most important direction of future R&D is the suppres-
sion/compensation of space charge when an axial magnetic
field is present on the cathode.

The influences of the skew quadrupole alignments on
flat-beam emittance ratio are also studied. Among the six
degrees of freedom for each quadrupole, rotations around
the longitudinal axis of the first two quadrupoles are found
to be the more influential on the flat-beam emittances.
It is important to have the high precision control of the
quadrupole tilt angles. This might be improved using
motorized rotatable mounts for the quadrupoles in order to
optimize the rotation online in future experiments.

We would like to thank Court Bohn from Northern Illi-
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