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Abstract
We calculate the impedance of the ceramic chamber

inside of which is coated with TiN and outside of which is
Cu shielded.

INTRODUCTION
Space charge impedance of rf-shielding wires with

external ceramic and conducting pipes were studied by T.
F. Wang et. al.[1]. This system corresponds to the beam
duct adopted in ISIS.

 In J-PARC[2] the ceramic chamber is surrounded by
Cu-stripes due to technical reasons. The inner surface of
the chamber is coated with TiN to suppress the secondary
electron emission. Tsutsui and Lee studied this system by
replacing Cu-stripes to the conducting beam pipe[3,4].  In
this paper we deal with Cu-stripes as rf-shield wires, and
compare the results with the previous results. The
resistivity of these rf-shield wires and the TiN coating is
considered.

THE LONGITUDINAL IMPEDANCE
In this section we calculate the longitudinal impedance

of the ceramic chamber. We use the cylindrical
coordinate(r,θ,z). A source particle q moves along the z-
direction with velocity βc at an offset of r=rb, θ=θβ. The
charge density ρ is expressed as,

ρ =
q
rb

δ(r − rb )δp (θ −θb )δ(z − βct)

=
dk
2π∫

m= 0

∞

∑ im cosm(θ −θb )
πrb

m+1(1+ δm0)
δ(r − rb )e

ik(z−βct ),

im = qrb
m .

                    (1)

Here we introduce multipole charge density ρm:
   ρm =

im cosm(θ −θb )

πrb
m+1(1+ δm0)

δ(r − rb )e
ik(z−βct ).                         (2)

The field driven by the charge density ρ is obtained by the
superposition of the field come from this multipole charge
density.
  The system we consider is described in Fig.1.The field is
calculated by solving the Helmholz equations for the
scalar potential except the TiN coating region. When we
deal with the TiN coating region, we solve the equation
for the vector potential. The solutions of this system
where eik(z-βct)  is omitted are written as,
Ez = −

ikbm

γ 2
cos(θ −θb )

Km (k rb )
Im (k rb )

Im

 

 
 (k r)

+ Km− pN (kk aFm− pN (k)cos (m − pN)θ − mθb[ ]Im− pN (k rb )
p=−∞

∞

∑
 

 
  for r < rb,

                                                                                        (3)

Ez = −
ikbm

γ 2
cos(θ −θb )Km (k r)(

+ Km− pN k aI( )Fm− pN (k)cos (m − pN)θ − mθb[ ]Im− pN (k r)
p=−∞

∞

∑
 

 
  

for rb < r < aI ,
                                                                                        (4)

Fig.1: The ceramic chamber outside of which is
surrounded by rf-shield wires. The inner surface is coated
with TiN.
  

     

Ez = ikbmβc (Km− pN (κTiN (aI + ∆))Am− pN Im− pN (κTiN r)
p=−∞

∞

∑

+Im− pN (κTiNaI )Bm− pNKm− pN (κTiNr))cos (m − pN)θ −mθb[ ]
for aI < rb < aI + ∆,

                                                                                        (5)

Ez = −
ikbm
γ1
2

1
ε1

Im− pN (k1aI )Fm− pN
(1) (k)cos (m − pN)θ −mθb[ ]Km− pN (k1r)

p=−∞

∞
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+
1
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∞
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for aI + ∆ < rb < aII ,
                                                                                        (6)
Ez = −

ikbm
γ 2

Im− pN (k1aII )Fm− pN
(3) (k)cos (m − pN)θ −mθb[ ]Km− pN (kr)

p=−∞

∞

∑
 

 
  

−
1
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In (kρW )

Kn (kρW )
NKm+n (krc )(e

im(m∆−θ b )Qn (r)Pn + e−im(m∆−θ b )Qn
* (r)Pn )

n=−∞

∞

∑
 

 
 

for aII < r,
                                                                                        (7)
where

Qn = Kn+m− pN (k
p=−∞

∞

∑ rc )Im− pN (kr)e
i(m− pN )(θ −m∆ ),

                                                                                        (8)
for r<rc, r and rc are exchanged for r>rc, rc  is the position of
rf-wire, ε1 is the relative dielectric constant of ceramic, µ1

is the relative permeability of ceramic, the wave number k
and the frequency f is related by k=2πf/βc, k = k /γ ,

γ1 =1/ 1− β 2ε1µ1, σTiN is the conductivity of TiN, σRF is the
conductivity of rf-wire, bm = imIm (krb ) /ε0πrb

m (1+ δm0), δm,0 is
Kroneker δ, ∆ is the width of TiN coating, aI +∆ is the
inner radius of the ceramic, aII is the outer radius of the
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ceramic, εRF  is the relative dielectric constant of rf-wire
which is given by  1+iσRFZ0/kβ[5,6], εTiN  is the relative
dielectric constant of TiN which is given by
1+iσTiNZ0/kβ[5,6], κRF = k 2 −εRFµRFk

2β 2 ,κTiN = k 2 −εTiNµTiNk
2β 2 ,

and  Fm-pN,Fm-pN
 (1) ,Fm-pN

 (2) , Fm-pN
 (3), Pn , Am-pN  and Bm-pN are

arbitrary coefficients.
     Let us consider the field inside of the rf-shield wire.
Following T. F. Wang, we use local coordinate (ρ,φm,z),
where m  denotes the index of the ordering of rf-wire.
Since the field inside of the rf-wire satisfies

                      εRFµRF

c 2
∂ 2

∂t 2
− ∆

 

 
 

 

 
 A = 0,                             (9)

where ∆ = ∇ ⋅ (∇⋅)− ∇ × (∇×) , Az can be written as,

Az
RF =

bm
2

(cle
im(m∆−θ b ) +

l
∑ c− le

−im(m∆−θ b ))Il (κRFρm )e
ilφm

                                                                                      (10)
where cl are the arbitrary coefficients. According to
matching conditions, Pn, cl  and Fm

(3)  are related as follows,
In (kρW )
Kn (kρW )

NKm+n (
n=−∞

∞

∑ krc )Pndn,l

= Im− pN (
p=−∞

∞

∑ kaII )Fm− pN
(3) Km+ l− pN krc( )Il kρW( ) + γ 2βcIl κRFρW( )cl ,

                                                                                      (11)
β
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−
β
c
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1
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In (kρW )
Kn (kρW )

NKm+n (
n=−∞

∞

∑ krc )Pnd'n,l (ρW )

=
1

µRF

cl
κRF

2
Il+1 κRFρW( ) + Il−1 κRFρW( )( ),

                                                                                      (12)
where  ρW is the radius of rf-wire, dn,l is the Fourier
coefficients of Qn:
                       Qn = dn,l (ρm

l=−∞

∞

∑ )eilφm ,                                (13)

prime at dn,l  in Eq.(12) means taking the derivative of ρ
m
.

   All arbitrary coefficients: Fm-pN,Fm-pN
 (1) ,Fm-pN

 (2) , Fm-pN
 (3),

Pn , cl, Am-pN  and Bm-pN are decided by Eqs.(11),(12) and
the matching conditions at r=aI, r= aI +∆,  r= aII: Ez,
Hθ    and  the normal component of D are continuous.  In
our calculation, we only consider the lowest order.
   Since we find arbitrary coefficients, we can calculate
the longitudinal impedance. According to Eqs.(3) and (4),
Ez  for the cylindrical beam whose radius is σ is expressed
as,
Ez = −

cZ0
πσ 2

ik
γ 2

drbrbK0(krb )I0(kr) + drbrbI0(krb )K0(kr)0

r
∫r

σ

∫( )
−
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σ

∫ I0(krb ) KpN (
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∞

∑ kaI )FpN (k)cos[pNθ]IpN (kr)

= −
cZ0
πσ 2

ik
γ 2

1
k 2

−
σI0(kr)K1(kσ )

k
 

 
 

 

 
 −

cZ0
πσ 2

ik
γ 2

σI1(kσ)
k

KpN (
p=−∞

∞

∑ kaI )FpN (k)cos[pNθ]IpN (kr).

                                                                                      (14)
By taking an average for r, we obtain
Z||
n

= 2 Z0
σ 2

i
γ γ 2 −1

1
k 2
(1− 2K1[kσ ]I1[kσ ]+ 2I1

2[kσ ]K0[kaI ]F0(k)).

                                                                                   (15)
  Space charge impedance is automatically included in

Eq.(15). In order to define the impedance of the ceramic

chamber, we have to subtract the space charge part. By
considering the system that the perfect conducting pipe
exists at r=aI, the space charge impedance is calculated as
follows,
Z||
n

= −2
Z0
σ 2

i
βk 2

1− 2K1[kσ]I1[kσ]− 2
K0[kaI ]
I0[kaI ]

I1
2[kσ]

 

 
 

 

 
 .

                                                                                      (16)
Here we should notice that Eq.(16) reproduces

→ −
iZ0
2βγ 2

1
2

− 2log σ
aI

 

 
 

 

 
 

 

 
 

 

 
 ,

for large γ[7]. From now on, we assume that space charge
part included in Eq.(15) is given by Eq.(16). We define
the impedance for the ceramic chamber by subtracting
Eq.(16) from Eq.(15).
    Previously, Lee obtained the analytic formula of the
longitudinal impedance per a unit length for the system
described in Fig.2[4]. This can be rewritten as follows,

Fig.2: The ceramic chamber outside of which is
surrounded by the conducting beam pipe.

Z
n

=
Z0

kβaI −
ε1

(ε1β
2 −1)kaI lnaII /aI

i − Z0∆σTiN

 

 
 

 

 
 

,
                         (17)

where small k approximation is applied. In Fig.3 we
present the results calculated by Eq.(17), and the rigorous
numerical results where small k approximation is not
applied. We find that these two results are good
agreement as γ becomes larger.

 
Fig. 3: The longitudinal impedance of the ceramic

chamber for Fig.2 is shown. The analytic results and
rigorous numerical results are compared. The left figure
corresponds to γ=1.181, the middle figure γ=1.4,  the right
figure γ=4. rc=0.1945[m], ε1=10, µ1=1, a2=0.189[m],
a1=0.1815[m], σTiN=6 ×106[Ω ⋅m], σRF=5 ×107[Ω ⋅m], the
beam size σ= 216π ×10−6 ×10 , ∆=10[nm],NW=110.
Re[Z||]<0 means deceleration.

   Let us compare our results of the longitudinal
impedance with the previous results. In Fig.4, we
compare the longitudinal impedances for Fig.1 with
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numerical results for Fig.2. These two results are good
agreement as γ becomes larger.

Fig.4: The longitudinal impedance of the ceramic
chamber is shown. The results for Fig.1 and the rigorous
numerical results for Fig.2 are compared. The left figure
corresponds to γ=1.181, the middle figure γ=1.4,  the right
figure. The parameters: rc, σTiN, ε1, µ1, a1, a2, ∆ and σTiN

are the same as those described in Fig.3. Other parameters
are given by σRF=5 ×107[Ω ⋅m],ρW==2.75[mm],NW=110.
Re[Z||]<0 means deceleration.

  THE TRANSVERSE IMPEDANCE
The transverse force Fx,y is calculated by Panofsky-

Wenzel theorem using Ez, while the transverse force can
be written by the transverse impedance Z1

 as follows,
       Fx,y = icβi1

dr
dr
cos(θ −θb ) − r dθ

dr
sin(θ −θb )

 

 
 

 

 
 
Z1
2πR

,

                                                                                   (18)
where 2πR is the circumference of our ring[8]. Therefore,
we obtain
             Z1,withSP = i I1[krb ]Z0kR

βγ 3rb
K1[krb ]
I1[krb ]

+ K1[ka1]F1
 

 
 

 

 
 .

                                                                                      (19)
As in the previous section, the space charge impedance is
also included in this impedance. Since the transverse
space charge impedance for the system that the perfect
conducting pipe exists at r=aI, can be written as,

Z1,SP = i I1[krb ]Z0kR
βγ 3rb

K1[krb ]
I1[krb ]

−
K1[ka1]
I1[ka1]

 

 
 

 

 
 ,

                                                                                      (20)
we define the transverse impedance for the ceramic
chamber as follows,

Z1 = i
I1[krb ]Z0kR

βγ 3rb

K1[ka1]
I1[ka1]

+ K1[ka1]F1
 

 
 

 

 
 ,

                                                                                      (21)
by subtracting Eq.(20) from Eq.(19). Here we should
notice that Eq.(20) reproduces
→→ iZ0

R
βγ 2

1
rb
2 −

1
a1
2

 

 
 

 

 
 ,

for large γ[8].
Let us compare the transverse impedances of the

ceramic chamber for Fig.1 with those for Fig.2 as in the
longitudinal case. Results are represented in Fig.5. Two
results are good agreement as γ becomes larger.

Fig.5: The transverse impedance of the ceramic chamber
is shown. The results for Fig.1 and those for Fig.2 are
compared. The left figure corresponds to γ=1.181, the
middle figure γ=1.4,  the right figure γ=4. The
parameters : rc, σTiN, ε1, µ1, a1, a2, ∆, σTiN, σRF, ρW and NW

are the same as those described  in Fig.4.

                        CONCLUSIONS
The longitudinal and transverse impedance of the ceramic
chamber inside of which is coated by TiN and outside of
which is Cu-shielded are calculated. Previously, the
impedance for this system was calculated by simplifying
the system: replacing the Cu-stripes to the perfect
conducting pipe. The results obtained   here are compared
with those previously obtained results. As γ becomes
larger, those two results coincide each other; this means
that the approximation that replacing the rf-shield wires to
the conducting beam pipe is quite appropriate for large γ.
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