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Abstract 
  The exact analytical expressions for the multipole 
longitudinal and transverse impedances of two-layer tube 
with finite wall thickness are obtained. The numerical 
examples for the impedances of the vacuum chamber with 
laminated walls are given. 

INTRODUCTION 
The knowledge of the vacuum chamber impedance in 

accelerators is an important issue to provide the stable 
operation of the facility from the machine performance 
and beam physics point of view [1,2]. To adjust the 
technical (high vacuum performance, reduction of static 
charge etc) and beam physics (resistive instability) issues, 
the laminated walls of vacuum chamber parts are often 
used in accelerators.   

The two-layer circular tube is a good model for the 
small-gap undulator vacuum chamber with thin covered 
walls.  The exact solution for the monopole longitudinal 
impedance of two-layer tube has been derived in [3].  In 
this paper explicit analytical solution for longitudinal and 
transverse multipoles has been obtained. The numerical 
example for copper-NEG (non-evaporated getter) two-
layer tube impedance is given.  

MULTIPOLE EXPANSION 
Consider the ultrarelativistic point-charge moving 

parallel to the axis of the uniform circular-cylindrical 
structure. The transverse position of the charge is given 

by the offset sr  and the polar angle 0=sϕ . The m-th 

multipole term of longitudinal impedance is given by [2]  
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where b  is the tube radius,  r , ϕ  are the radial and polar 

coordinates of the observation point and ( ) ( )ωmZ ||  is the 

frequency-dependent term of multipole, sometimes also 
identified as an impedance. The transverse mode is given 
by Panofsky-Wenzel theorem [4]. 

THE PROBLEM 

  Let us consider the relativistic ( )cv <  plain disk (disk 

radius sra =1 ) moving with velocity v  along the 

uniform, circular-cylindrical two-layer tube of inner 

radius 2a  (Fig.1). The disk centre coincides with the tube 
axis and the disk radius corresponds to the charge offset. 
  The charge density in frequency ω  domain is then 

given by )2,1( 00 == >mδδ : 
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The boundary between two layers is located at 3ar =  

and the outer radius of the tube is 4a . Outside of the tube 
is vacuum. In analogous to [1] the frequency-depend part 
of impedance is independent from the disk radius and 
hence valid for the point-like charge.  

 
Figure 1: Geometry of the problem.

SOLUTION 
The cross section of the tube is divided into the five 

concentric regions: 1) srar =≤≤ 10  (vacuum), 2) 

bara =≤≤ 21  (vacuum), 3) 32 ara ≤≤  (first 

layer), 4) 43 ara ≤≤  (second layer) and 5) 

4ar ≥ (vacuum). Due to current axial asymmetry the 
fields radiated in the tube have all six components 

zz HE , , ϕϕ HE , , and rr HE , . The frequency domain 

wave equation for longitudinal electrical and magnetic 

components zz HE ,  in each region can be written as: 
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where ( )mρρ =1  is a charge density, 01 =>iρ , iε  are 

the dielectric permeability, iχ  are the radial propagation 

constants, vk ω= . In vacuum regions ( 5,2,1=i ) 

0εε =i  and λγχ == ki  with 0ε  - the vacuum 
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dielectric constant and γ  - the Lorenz factor. Transverse 

components are expressed by the longitudinal ones: 
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where ⊥∇
r

 is a transverse part of the gradient operator, 

and 0µ  is a magnetic permeability of vacuum. The rhs of 

the equation (3) for the electrical component vanishes 
everywhere except the beam region with non-zero charge 

density ( )mρ . Therefore the non-zero partial solution 
exists only in the beam region. For the charge density 

given by (2), it is simply ( )
01 / ερ kjGE m

z == . The 

solution of the homogeneous wave equation in the beam 
region, which includes the axis 0=r , is only modified 
Bessel functions of first kind since those of the second 
kind diverge for argument zero. The longitudinal electric 
and magnetic fields in the beam region are then 
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In the subsequent regions 2,3,4, the longitudinal field 
components are given by superposition of modified 
Bessel functions of both kinds: 
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with ii GF , , iP , iQ  unknown coefficients and the 

functions )(),( rSrR ii  combined as 
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Transverse components (4) expressed with the help of 
functions 
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In the outer region ( 5=i ) that extends to infinity, only 
modified Bessel functions of the second kind are 
admissible. The longitudinal fields in outer region is then: 
 

( ) ( )rKPHrKFE mzmz λλ 55 , ==   (9) 

 

The unknown coefficients iF , iP  ( 5,...1=i ), and 

iQ , iG  ( 4,3,2=i ) are defined by the matching 

conditions. From five field components 

ϕϕ HEHE zz ,,,  and rH  which should be matched at 

transition boundaries, the four ones have been chosen for 
basic equations system composition, providing the 

matching at iar =  ( 4,3,2,1=i ):  
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 The fifth ϕE  component matching is follows 

automatically.  

LONGITUDINAL MULTIPOLES 
The system (10) contains 16 linear equations with 16 

unknown parameters. The common solution of this 
system has a complex form and doesn’t present here. 
Nevertheless, after putting 0=m  and proceeding the 
ultra-relativistic limit it transfers to the already obtained 
results for monopole longitudinal mode [3]. Here we are 
presenting the ultra-relativistic form of coefficient 1F , 

valid for any 0>m : 
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where 3003 εεε +=  and the function V  is the 

combination of the Bessel functions of the first and 
second kinds that can be analytically evaluated. The 
analytical presentation of function V is omitted in this 
paper due to space limit.  

  The longitudinal component of electric field zE  is 

obtained by substituting 1F  (11) into (9) and taking the 
ultrarelativistic limit of modified Bessel function: 
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The mth  multipole mode of the longitudinal impedance is 
then given by: 
 

( ) ( ) ( ) 1
0||
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with Ω= 3770Z . For the single-layer tube with 

infinity wall thickness ( ∞→4a , 43 εε = , 43 χχ = ) 

the impedance is modified to  
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which for ma >>|| 42 χ  turns to the well-known point-
charge truncated longitudinal multipole mode [1]: 
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On Fig.2 the distributions of the longitudinal modes for 

3,2,1=m  for stainless-steel (SS) tube with thin inner 

copper cover )100( nm=∆  are presented. The 

geometry of the tube is: mma 22 = , ∆+= 23 aa  and 

mma 44 = .  
 

 

 
Figure 2: Distributions of real (top) and imaginary 
(bottom) parts of the longitudinal modes for 1=m (solid), 
2 (dashed) and 3 (dotted) for SS-copper tube.  

TRANSVERSE MULTIPOLES 
Transverse impedance is determined using Panofsky-

Wenzel theorem [4]: 
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The transverse multipole mode frequency dependence is 

described by the function ( ) [ ]Ω−1
|| kZ m . In the ultra-

relativistic limit transverse mode is expressed via the 
 
 
 

coefficient 1F  (11). The distribution of the frequency 

dependent part of the dipole ( 1=m ) transverse 
impedance is given in Fig.3.  For comparison shown the 
transverse impedances for copper and stainless-still tubes.  
 

 
Figure 3: Distribution of the real part of transverse dipole 
mode (solid). Also shown: copper (dashed) and stainless-
steel (dotted) tubes truncated impedances. 

As it follows from the Figure 3, the behaviour of the 
transverse dipole mode impedance is the same as ones for 
the longitudinal monopole mode [3] and conditioned by 
the skin depth of inner layer. For the low frequencies the 
impedance tends to the stainless-steel tube impedance and 
in the opposite case closes to the copper tube impedance.  

CONCLUSION 
An exact solution for the longitudinal and transverse 

impedance multipoles of the point-like charge in two-
layer circular tube with finite wall thickness is obtained. 
The limiting cases for the single layer tube and tube with 
infinity wall thickness are discussed as well. The solution 
is valid for both thin and thick layers with arbitrary 
materials and wall thickness. These results can be used 
for the small-gap undulator laminated vacuum chamber 
calculation. 
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