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Abstract 
Described is the wiggler with reduced nonlinear 
components for usage in the damping ring of the Linear 
Collider. Zigzag field dependence on longitudinal 
coordinates made by profiling of poles.   

 
INTRODUCTION 

   Wigglers are important insertion devices for storage 
rings for use of SR generation. The search for an ideal 
wiggler is on the arena today as it appears as an inevitable 
part of the linear collider in many projects for damping 
rings.  
     Vertical emittance plays a more important role than the 
radial one, as it was mentioned first in [1]. The idea why is 
that, can be simplified by the following. As at IP one needs 
to have flat beams for reduction of energy spread forced by 
synchrotron radiation, then the easiest way to reach this is 
with enlarged horizontal emittance, rather than horizontal 
envelope function. So linearity in vertical motion plays a 
key role in this emittance business in the search for 
luminosity in the linear collider.    
      In some publications the wiggler is treated as a series 
of dipoles installed with reversed polarities, one after 
another. Despite this, it is true formally; some incorrect 
conclusions were made on the quality improvement for 
these installations. First, as in some laboratories, the 
measurements of the wiggler field were carried out with 
long coils, so the wiggler was treated as a somehow 
averaged field. So conclusions were made there that the 
width of the poles were often incorrect. They allowed 
being narrow in a view of cancellation of the field integral 
in neighboring poles. This might be especially confusing 
for the wiggler with even numbers of poles, where integral 
is zeros by definition, despite significant roll-off the field 
across the pole. Publication [2] was probably the first one 
where there was attracted attention to these effects.  
     In addition, formally, computer codes and presentation 
of Hamiltonian of transverse motion is based on 
coordinates which are expansions with respect to the 
reference (equilibrium) trajectory so for equilibrium 
particle all transverse coordinates are zeros. In a wiggler 
the particle wiggles with the amplitude of γ/~ KWD  with 

respect to origin wiggler coordinates, ( WD stands for 
wiggler period divided by π2 and deflection parameter K 
defined as 2

0 / mcZeBK WD= , where 0B is amplitude of 
first harmonic of the magnetic field). The field expansion 
with respect to this wiggling trajectory is extremely 
complicated, however.  
     Other approach associated with presentation of wiggler 
field with respect to Cartesian coordinates where wiggler 
field has rather simple presentation, which is not 
associated with reference equilibrium trajectory. So 

equilibrium trajectory is not having zero coordinates now 
as it wiggles through the field described by this way.  

In our previous publications we considered some 
improvements of field quality, which can be easily done 
practically for any wiggler [3], [4], [5]. Our look at dipole 
wiggler is that it can be represented as series of partial 
transversely oriented quadrupoles, so the particle passes 
them across longitudinal coordinate s through central 
region and developing wiggles along x, [6].  
 

 
 

Figure 1: Representation of wiggler as series of 
quadrupoles with transverse orientation.   
 
One can see that nonlinear terms associated with higher 
derivatives. So as particle is moving along x, towards and 
backwards form viewer in Fig.1, one can easily see, why 
the wiggler always focusing particle in vertical direction: 
with reverse of longitudinal field direction in 
neighbouring quads, the angle is reversed too. So the 
basic concept emerging is if the field is represented as 
series of quadrupoles, one needs to have the field in these 
quadrupoles as linear as possible.   

  
FIELDS IN A WIGGLER 

Let us consider a wiggler with finite pole width across 
transverse coordinate which directed along Cartesian 
coordinate x, vertical axes y and longitudinal one –s. 
Particles supposed to move along s –axis. If zero x lies in 
the medial plane y=0 and transversely coincides with the 
middle of the pole, then analytical representation for the 
wiggler fields is the following [3], [5]  
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where B(s), S(s), D(s) stand for generation functions for 
dipole, sextupole, decapole, … field along the wiggler 
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respectively. Here derivatives are taken along s. So these 
expansions are valid for particular choice of coordinates. 
We also suggested that plane sy is a plane of symmetry 
for the wiggler. In this case function B(s) can be defined 
simply by measurements along s –axis or by calculations, 
as in this case x=y=0. After that, all necessary derivatives 
appeared in (1), can be taken numerically with necessary 
accuracy. So now the difference between calculated (or 
measured) transverse field variations and found from (1) 
can be treated as higher harmonics, with sextupole S(s) as 
a lowest one. Or with other words, if one has transverse 
field roll-off, say at field maximum, calculated or 
measured, sextupole component S(s), having 
dependence~x2 can be identified after subtraction the 
terms, associated with derivatives. Other harmonics, such 
as D(s) can be found in the same manner, taking in 
consideration dependence ~x4 and so on. This gives a 
simple and powerful recipe for representation of wiggler 
field for the purposes of calculation of nonlinearities and 
dynamical aperture associated with this. 
    In case, when the poles are much wider, than aperture 
opening, the field can be described by single generating 
function B(s) only, which stands for the vertical dipole 
field. All multipole components responsible for transverse 
dependence must be vanished and, according to formula 
(1) this will bring association of derivatives with 
appropriate multipole [3]. For example, in this case 
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and field expansion now can be represented as the 
following  
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If the field is time dependent, then the following 
substitutions need to be done in formulas (1), (2)  
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Where c –is speed of light. Odd derivative obtained by 
taking integral over s in this combination. 
     One can easily conclude from (2), that if longitudinal 
field distribution is a (piecewise) linear one, then all 
derivatives are going to be zero. For the wiggler, of cause 
linear dependence everywhere is not possible, just 
piecewise smooth linear function, so these derivatives 
emerge at points where the field reaches its extremes, see 
Fig 2.  Let us check if these points can give an input to the 
vertical kick however. Formally as the second derivative 
is proportional to the local curvature, it can be very big at 
these points. Fortunately there might be two factors 
helping in kick reduction. First one is that the vertical 
forces acting to the particle, is proportional to the 
transverse angle, x′≅α , which is zero at points of 
extreme. Other is that the second derivative is limited by 

physical means, going to be 2
max /)( aBsB ≅′′ , where a 

stands for characteristic dimension, which might be an 
aperture opening at this place. 

B(s)

Points where derivatives are big

0s0s
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Figure 2: Longitudinal profile of magnetic field with 
linear dependence between extremes.  
 
   Vertical field yB  defines local amplitude of horizontal 
wiggling angle, 
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Cosine in denominator is due to the fact that integration is 
going along straight line. Meanwhile sB  defines vertical 
kick sBy ⋅≅′ α . The regions around maximal or minimal 
values of field, the particle passing with zero angle with 
respect to longitudinal axis. So we can suggest, that 
around maximal field value the angle depends like odd 
function of longitudinal coordinate s, 

...3
31 +⋅+⋅≅ skskα , where coefficients ,..., 31 kk  

defined from (2) and (4). While particle passes from 0s−  

to 0s+ , where s0 is arbitrary coordinate, not far from 
maximum, so resulting nonlinear vertical kick is 
proportional to the following 
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Calculating this integral one can obtain      
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So one can see if second derivative of field distribution at 
this point s =s0 is zero, then the integral (6) goes to be a 
zero. Although assumption was about symmetry of field 
distribution around maximum/minimum of magnetic field 
this result still valid under broader conditions, as soon as 
second derivation is zero at the ends of integration 
interval.  
     Again, now one can see that requirements of 
nonlinearity for linear field dependence all derivatives are 
disappeared except in points around extremes. But 
namely here the angle is zero, so there is no nonlinear 
action at all. Of cause this idealized jump of curve slope, 
represented in Fig.1 is not possible in practice, but it was 
interesting to investigate on how close to this distribution 
it is possible to approach.   
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WIGGLER’s  HARDWARE 
To see how our considerations can be applied to the real 
case, we have modeled real wiggler. 3D model was 
erected and field calculations with MERMAID have been 
carried for the hardware represented in Fig.3.  This model 
does not associated with any specific project, however. 

 
Figure 3: Wiggler with profiled poles. 

    Eleven pole wiggler in Fig.3 has period 25 cm and the 
pole width 30 cm. Poles approximated by cylinders with 
radius 5.5 cm with ribs having height 0.83 cm, width 0.8 
cm with fillet radius 0.4cm. So the pole in lowest point 
runs 2.7 cm above medial plane. All iron in this model is 
Steel 1010. Current running in central pole coil is 60kA. 
In the end coils the current is ~14 and ~43 kA 
respectively. Coil itself has dimensions 2.3× 2 cm2. 
Supposedly this is a coil with SC wires. Details of 
cryostat are not shown, just cold mass only.  

 
Figure 4: Magnetic lines for ~¼, ½, 1 tapering.   

 
Tracking in this field done with help of numerical code 
[7]. Result is represented in Fig. 6 below. Vertical 
focusing could not be eliminated, of cause. Once again, 
the purpose of our investigation is to make this focusing 
as linear as possible.  

 
Figure 5: Longitudinal field dependence (as function of s) 
at x=0 calculated for wiggler Fig. 3 with tapering ~ ¼, ¾, 
1. Right point on this picture corresponds to s=150 cm.   

   
Figure 6: Trajectory of electron with energy 5 GeV 
entering at x=y=0, left. Difference between exit and 
entrance y –coordinates and the linear model fit, right.    
 
One can see from Fig. 6 that at least for 1-cm incoming 
coordinate there is no nonlinear action to the particle, just 
pure focusing. 
 

CONCLUSIONS 
   We originated here a new approach to the wiggler 
design.  Basic idea behind is very simple: if the wiggler 
can be considered as series of (transversely oriented) 
quadrupoles, then let make these quadrupoles having an 
ideal field. The region with linear dependence is a 
piecewise smooth linear one which can be generated by 
poles, having a profile of quadrupole (hyperbolas).  One 
can consider formation of linear dependence with 
distributed currents as well. Other recommendation can 
be given is that the pole must be as wide as possible.  
      Period required for minimization of emittance must be 
as small as possible. This contradiction with requirement 
for minimization of non-linearity is eliminated by linear 
zigzag dependence like just described above. 
     Work supported by NSF.  Extended version available 
at  http://www.lns.cornell.edu/public/CBN/2005/CBN05-
1/cbn05-1.pdf 
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