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Abstract

On November 16, 2004, a CW accelerating gradient of
46 MV/m was achieved in a superconducting niobium cav-
ity with an unloaded quality factor (Q0) over 1 × 1010

at a temperature of 1.9 ◦K. In pulsed mode, 47 MV/m
was achieved. This represents a world record gradient
in a niobium RF resonator. At a reduced temperature of
1.5-1.6 ◦K, an enhanced Q0 was measured, ranging from
7 × 1010 at 5 MV/m to 2 × 1010 at 45 MV/m. The 1.3
GHz single-cell cavity has a reduced ratio of Hpk/Eacc, en-
sured by a reentrant geometry. The maximum peak surface
electric and magnetic field exceeded 100 MV/m and 1750
Oe respectively. A soft multipacting barrier (predicted by
calculations) was observed near 25 MV/m gradient and
was easily processed through. Field emission in the cav-
ity was negligibly small, and the highest field was limited
by thermal breakdown. The cavity was built, processed,
and tested with LEPP facilities at Cornell University. New
techniques included half-cell heat treatment with yttrium
for post-purification to RRR = 500, and vertical electropo-
lishing the finished cavity.

INTRODUCTION

The accelerating gradient Eacc (see [1] for definition)
in RF superconducting niobium resonators has been raised
remarkably in the past decades. In 1.3 GHz single-cell
niobium cavities, an accelerating gradient in excess of 40
MV/m has been reliably achieved [2] with the best result
being 42-43 MV/m [3].

The ultimate gradient limit Emax
acc for a given cavity

geometry is set by breakdown of superconductivity when
the peak magnetic field Hpk on the RF surface of a res-
onator reaches the critical RF magnetic field Hcrit,RF ,

Emax
acc =

Hcrit,RF

Hpk/Eacc
. (1)

Hcrit,RF is a material property and Hpk/Eacc is solely de-
termined by the cavity geometry. The super-heating the-
ory [4] predicts that Hcrit,RF = 1.2Hc for niobium at
microwave frequencies, Hc being the DC thermo-dynamic
critical field. Despite the prediction of a Hcrit,RF value
close to 2300 Oe at 2 ◦K, the maximum achieved experi-
mental Hpk value is still below 1900 Oe. Over the past 10
years, the 1.3 GHz niobium cavities in the 40 MV/m class
were limited by quench at Hpk = 1750± 100 Oe [5].
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Advancing Eacc beyond the state-of-the-art can be re-
alized through two avenues: (1) Develop new technolo-
gies for niobium material production and cavity surface
processing so as to bring Hpk to the intrinsic limit Hcrit,RF

of niobium or explore alternative material possessing a
higher Hcrit,RF , such as Nb3Sn; (2) Reduce Hpk/Eacc

by changing the cavity geometry.

REENTRANT CAVITY

The concept and RF optimization of reentrant cavity has
been published in Ref. [6]. Here only a brief summary is
given. Our optimization is referenced against the center-
cell shape of the 1.3 GHz 9-cell TESLA cavity. Driven
by the wakefield effect consideration, the bore hole diam-
eter at iris is kept identical to that of the reference geom-
etry (70 mm). This prerequisite has the following conse-
quence: a reduced Hpk/Eacc is obtained only at the cost of
an increased Epk/Eacc. An elevated peak surface electric
field (Epk) is dis-advantageous in terms of field emission
and voltage breakdown. Nevertheless, there are convincing
experimental data [7][8][9] to show that a surface electric
field of 100-200 MV/m imposes no fundamental limit to
superconducting niobium.

The reentrant geometry we have chosen to evaluate ex-
perimentally is shown in Fig.1. For comparison, the ref-
erence geometry of the original TESLA shape is given as
well. Relevant RF parameters are compared in Table1.

Figure 1: Half-cell contours of reentrant and original
TESLA shape.
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Table 1: RF parameters: reentrant vs. reference shape. f:
resonant frequency; k: cell-cell coupling factor.

Shape f [MHz] Hpk

Eacc
[ Oe
MV/m ] Epk

Eacc
k[%]

Reentrant 1300 37.8 2.4 2.4
TESLA-type 1300 42.0 2.0 1.9

For understandable reasons, a single-cell cavity was fab-
ricated for the first experimental evaluation of the concept.
RF parameters of the single-cell cavity are slightly modi-
fied, as compared to that of the center cell of a multi-cell
cavity, because of beam tubes. Ultimately, the calculated
RF parameters of the single-cell reentrant cavity are given
in Table 2.

Table 2: RF parameters of single-cell reentrant cavity
Frequency 1284 MHz
Hpk/Eacc 37.9 Oe

MV/m

Epk/Eacc 2.2 -

FABRICATION AND SURFACE
TREATMENT

The reentrant cavity was fabricated by using the regu-
lar method. Cups were formed by deep-drawing 3 mm
thick sheet material. The reentrant contour was obtained
by multiple stamping steps using additional dies. Stacked
cups with interleaving yttrium foils were heat treated in a
furnace at 1200 ◦C for 4 hours. The residual resistance
ratio (RRR) was increased to about 500 from the starting
value of 250. A layer of 20 µm was removed by chemi-
cal etch (BCP1:1:2) from both in- and out-side surface of
the cups. Half-cells were joined to beam tubes (reactor
grade niobium) by electron beam welding. The inner sur-
face of half-cell/beam tube sub-assemblies was electropo-
lished with a vertical set-up [10], removing material by
about 50 µm. The equator end of sub-assemblies was im-
mersed in BCP1:1:2 for 5 minutes. The final fabrication
step was to join sub-assembly equators by electron beam
welding (butt weld).

The surface preparation of the single-cell cavity, prior to
each RF test, typically consists of chemical etch (BCP1:1:2
at temperatures below 10◦C or vertical electropolish), fol-
lowed by high pressure water rinsing (pump pressure 1000-
1200 PSI), clean room assembly and low temperature bake-
out (90-120 ◦C) under vacuum. Vertical electropolishing of
a single-cell cavity (Fig.) is conceptually identical to that of
a half-cell [10], except the fashion of acid agitation1. In any

1For a half-cell, a magnetically driven spin bar alone provides suf-
ficient agitation; whereas for a single-cell, acid agitation inside the cell
must be provided directly by two flexible arms inserted into the cell space.
The rotation movement of arms is provided by a coupled spin bar.

Figure 2: Vertical Electropolish of a single-cell niobium
cavity.

case, electropolish was performed in the continuous current
oscillation mode.

RF TEST AND CAVITY PERFORMANCE

RF tests were conducted for a temperature range of
1.5-2.0 ◦K. Q(Eacc) curves were measured when the RF
was operated in the CW mode. RF processing (CW or
pulsed) was applied often. Sometimes, gas helium process-
ing was performed with a best improvement from 37 to 43
MV/m (16%) in the accelerating gradient.

A summary of RF test results is given in Table 3. With
an accumulated surface removal of 18 µm by BCP1:1:2 for
the welded single-cell cavity, an accelerating gradient of
27 MV/m was already reached during the second test at
a Q0 of 6 × 109. No field emission was observed. This
result shows that gradients in excess of 25 MV/m can be
obtained at a high Q0 by performing heat treatment and
primary electropolish at the half-cell stage.

The highest CW accelerating gradient reached
46.3 MV/m at 1.9 ◦K with a Q0 of over 1 × 1010

(Fig. 3) after the cavity was further electropolished. This
corresponds to a peak surface electric and magnetic field
of 101 MV/m and 1755 Oe respectively. At a reduced
temperature of 1.5-1.6◦K, an enhanced Q0 was measured,
ranging from 7× 1010 at 5 MV/m to 2× 1010 at 45 MV/m.
Field emission in the cavity was negligibly small. The
highest accelerating gradient reached in the pulsed mode
was 47 MV/m and was limited by thermal breakdown.

A soft barrier was observed reproducibly at Eacc ∼
25 MV/m, in excellent agreement with calculated multi-

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 654



Table 3: Accelerating gradient history of the single-cell
reentrant cavity at 2 K.

Test Em
acc Q0(Em

acc) Limit
1 25.0 5× 109 Quench
2 27.1 6× 109 Quench
3 26.9 7× 108 Quench
4 18.4 2× 108 Power
5 37.1 8× 108 Power
6 42.6 1× 109 Power
7 44.4 1× 109 Quench
8 44.3 8× 108 Quench
9 42.5 9× 108 Power
10 46.3 1× 1010 Quench
11 39.2 4× 109 Quench

pacting barrier (first order two-sided multipacting at equa-
tor [6]). It was easily processed through by exercising some
RF processing. Similar multipacting barrier of comparable
hardness is observable also in TESLA type single-cell cav-
ities, as well as nine-cell cavities. Based on these results, it
is expected that a multi-cell reentrant cavity will have also,
but not be limited by, a soft multipacting barrier.

CONCLUSIONS

The results of these experiments demonstrate that the
accelerating gradient can be improved by reducing the
Hpk/Eacc ratio, despite an increased Epk/Eacc. Explo-
ration in this direction is thus warranted. A new RF design
has already shown that Hpk/Eacc can be further reduced
to 35 Oe/(MV/m) by reducing the iris diameter to 60 mm
[11]. A single-cell 60 mm beam tube reentrant cavity has
been fabricated and RF test is under preparation. An accel-
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Figure 3: Performance of Cornell reentrant cavity LR1-2.

erating gradient of 50 MV/m is expected by applying the
same surface treatment established from the present reen-
trant cavity studies.

The achieved 46.3 MV/m represents the highest CW ac-
celerating gradient ever realized in a niobium RF resonator.
At 1.5-1.6 ◦K, Q0 is 7 × 1010 at low field and remains
2 × 1010 at 45 MV/m. Measurements of Q0(T ) show that
the residual resistance is 3 nΩ.

The successful demonstration of a peak surface electric
field in excess of 100 MV/m over the broad iris surface area
of the reentrant cavity confirms that there is no fundamen-
tal limit due to the surface electric field. However a high
surface electric field imposes challenges for control of field
emission and surface damage. It has been observed that
surface damage in the iris region occurs when a contami-
nated cavity is operated at high gradient [12]. The robust-
ness of a broad niobium surface under a peak RF field of
> 100 MV/m must be examined and demonstrated to war-
rant the practical use of reentrant cavities in accelerators.
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