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Abstract

This work shows that halos in beams with space charge
effects can be controlled by combining nonlinear focus-
ing and collimation. The study relies on Particle-in-Cell
(PIC) simulations for a one dimensional, continuous focus-
ing model. The PIC simulation results show that nonlinear
focusing leads to damping of the beam oscillations thereby
reducing the mismatch. It has been well established pre-
viously that reduced mismatch leads to reduced halo for-
mation. However, the nonlinear damping is accompanied
by emittance growth causing the beam to spread in phase
space. As a result, inducing nonlinear damping alone can-
not help mitigate the halo. To compensate for this expan-
sion in phase space, the beam is collimated in the simula-
tion and further evolution of the beam shows that the halo
is not regenerated. The focusing model used in the PIC
simulation will be briefly discussed based on a systematic
analysis that has already been done through canonical av-
eraging using Lie transform perturbation theory. This anal-
ysis shows that by averaging over a lattice period for a spe-
cific arrangement of linear and nonlinear elements, one can
reduce the focusing force to a form that is identical to that
used in the PIC simulation in an averaged sense, thus pro-
viding an equivalence between the model and a realistic
system.

INTRODUCTION

Beam halo formation is a major issue limiting the func-
tioning of high current accelerators in a number of current
and proposed applications. Some of them include heavy
ion fusion, nuclear waste treatment, production of tritium,
production of radio isotopes for medical use and spalla-
tion neutron sources. The halo is formed by particles that
drift far away from the characteristic width of the beam.
These particles could get absorbed by the accelerating sys-
tem causing residual radioactivity. Many of the above ap-
plications have a very low tolerance to the number of parti-
cles lost, which is about one part in 105 to 106.

Early studies on beam halo formation included that of
O’Connell et al [1] who traced the trajectories of various
test particles with different initial conditions for a beam in a
constant, linear focusing channel. This led to the discovery
of “hybrid” trajectories, which undergo a resonant interac-
tion with the breathing mode of the “core”. This resonance
was later systematically analyzed by Gluckstern [2]. This
analysis shows that a one time collimation of the halo is in-
effective because the continued resonant interaction causes
the halo to almost always regenerate.

∗now at Stanford Linear Accelerator Center

The initial part of this paper is based on a more exten-
sive study that uses a combination of nonlinear focusing
followed by halo collimation [3]. It relies on the constant
focusing channel with no longitudinal variation which is
an idealized model that has been extensively used in un-
derstanding of formation of the transverse halo in linear
focusing systems. The extension of this model to nonlin-
ear focusing is not straight forward and requires more de-
tailed analysis. Moreover, nonlinear focusing itself places
a number of restrictions on the performance of the accel-
erator, for example limiting the dynamic aperture of the
machine. Linear focusing systems such as the alternate
gradient quadrupole systems contain he Courant-Snyder in-
variants [4], which reduce the system to an uncoupled set
of systems of one degree of freedom. In the presence of
higher order components such as sextupoles or octupoles,
these invariants are destroyed. Such a system is noninte-
grable and has trajectories that are chaotic and poorly con-
fined. The equivalence between a linear alternating gradi-
ent system and a continuous focusing force has been an-
alyzed [5, 6, 7, 8]. A similar equivalence that has been
extended to nonlinear focusing [9, 10] will be discussed
here.

This paper is arranged as follows, the next section con-
sists of a discussion of the relationship between mismatch
ratio in linear focusing systems, and the maximum extent of
the beam halo. The following section illustrates the process
of damping and emittance growth resulting from nonlinear
focusing. This will be followed by a study of the effect of
halo collimation on a beam in a linear and nonlinear fo-
cusing channel respectively. After this, we move over to
a brief discussion of the equivalence between a constant,
nonlinear focusing model used in the PIC simulations and
a realistic focusing system consisting of quadrupoles and
sextupoles. The results are summarized in the final section.

HALO AND MISMATCH RATIO

The dependence of the extent of beam halos and the ini-
tial beam mismatch has been studied by Wangler et al,
[11], where it has been shown that the maximum dimen-
sionless particle amplitude Xmax, which is the distance
with respect to the matched beam width, can be described
by an approximate empirical formula, which is,

Xmax = A + B|ln(µ)|. (1)

Here, A and B are weak functions of the tune depression
ratio approximately given by A = B = 4 [11], and µ is the
initial beam mismatch ratio. This result is not a good esti-
mation for maximum amplitude for µ close to 1. It has also
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Figure 1: Phase space distribution at minimum rms width
for µ = (a) 1.35 (above), (b) 1.02 (below)

been shown [13] that in addition to increased halo extent,
the number of halo particles grows with increased initial
mismatch ratio. It has also been shown that a better match
can be found using nonlinear focusing [12] leading to re-
duced mismatch.

In Fig 1, we examine the halo generated for beams with
two different initial mismatch ratios. The simulation was
performed using a radial PIC for a beam with constant fo-
cusing and no longitudinal variation. The focusing force
was of the form,

F = −k0r (2)

The beam had an initial Gaussian distribution in the
transverse position and velocity space. The coordinates
represent the normalized phase space variables, X =
x/a0 where a0 is the matched rms beam width as pre-
dicted by the rms envelope equation [15], and Vx =
(dx/ds)/

√
k0a0. The tune depression calculated from the

envelope equation was chosen to be 0.1 for all the cases,
which implies that the beam is space charge dominated.
We used 100,000 particles in all the PIC simulations, which
was large enough for the particle distributions to retain the
desired azimuthal symmetry required in a radial PIC. The
values of the mismatch ratio µ used were (a) 1.35, and
(b)1.02 . The runs were performed for about 50 rms os-
cillations and the distribution was always taken when the
rms width of the beam was at a minimum during the rms
oscillations. The figures confirm the well known result that
reduced mismatch leads to reduced halo formation. The
extent of the halo agrees well with the above empirical for-
mula. In a next section, it will be shown that the introduc-

Figure 2: RMS oscillation of beam under (a) linear focus-
ing, (b) nonlinear focusing

tion of nonlinear focusing introduces damping of the beam
oscillation thus leading to reduction in the mismatch ratio.

DAMPING OF RMS OSCILLATIONS AND
EMITTANCE GROWTH FROM

NONLINEAR FOCUSING

Figure 2 shows the oscillation of the rms width of beam
scaled to a0, ie, M = a/a0, for the case of linear and non-
linear focusing respectively. The nonlinear focusing has
the form

F = −k1r − k3r
3 (3)

The parameters k0, k1 and k3 were related to each other
such that k0a0 = k1a0 + k2a

3
0 and k1/(k2a

2
0) = 4. The

Figure 3: Phase space distribution of the beam with nonlin-
ear focusing
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Figure 4: Phase space distribution after collimation for (a)
linear focusing (above), (b) nonlinear focusing (below)

initial distributions were identical to each other. The mis-
match ratio in the corresponding linear focusing channel
was µ = 1.35. It is clear that the nonlinear focusing in-
troduces damping of the rms oscillation thus reducing the
mismatch ratio. This phenomenon is well know in various
areas of physics as Landau damping.

Figure 3 shows the phase space distribution of the par-
ticles subjected to nonlinear focusing under the same con-
ditions described above. The beam was propagated for the
same length along the channel as was done for linear fo-
cusing shown in Fig 1. The rms width was at its minimum
during the end of the oscillations. It is clear that the distri-
bution expands in velocity space. This is due to a transfer
of energy stored in the mismatch to the velocity distribution
of the particles. The extent in position space is comparable
to that obtained in the linear focusing model. Thus, it is
clear that nonlinear damping by itself does not control the
halo.

COLLIMATION OF HALO WITH LINEAR
AND NONLINEAR FOCUSING

It has been well established that a one time collimation
for a beam in a linear focusing channel is ineffective [2].
The results in this section confirm these results and provide
a reference for comparison with results obtained by col-
limation followed by nonlinear damping. Collimation in
general requires one to identify what region should be re-
garded as the beam halo. There is no established quantita-
tive definition as yet of a beam halo although recent efforts
are being made to quantify such a halo [14]. In the present

simulations, the halo was visually identified and collimated
in phase space over an ellipse that satisfied the equation
X2+Y 2/c2+V 2

x +V 2
y /d2 = 1. Here c and d are expressed

in units of a0 and a0

√
k0 respectively. The values of c and

d were 3.5 and 1.5 respectively for an initial mismatch ratio
of 1.35. This resulted in a particle loss of 4.3 percent. A
similar procedure was executed for a beam with nonlinear
focusing. In this case, the aperture for collimation was dif-
ferent to compensate for the spread in velocity space. That
is, c=2.75, d=2.5 and the particle loss was 10.1 percent. It
is clear that the halo is eliminated. The collimation was
performed by scraping off the particles simultaneously in
all dimensions of phase space. While this cannot be real-
ized experimentally, it has been shown that similar results
can be produced using a realistic collimation system [3].

Figure 4 shows the phase space distribution of the beam
that was evolved for S = 300, while the collimation took
place after about 15 rms oscillations when the rms width
was at its maximum. The mismatch µ was 1.35. It is clear
that the halo is regenerated for linear focusing. In order
to show the halo particles more clearly, the particles are
made to appear a little wider in the first plot. Although the
halo intensity is smaller than that seen in Fig. 1, it is large
enough to cause radio activity of the walls given that the
tolerance to fractional loss in many machines to the num-
ber of halo particles is one in 104−105. In the case of non-
linear focusing, the figure shows that the beam halo is not
present. The loss in particles due to collimation is compen-
sated by the absence of a halo. This is because the absence
of a halo would increase the acceptance of the machine thus
allowing for a higher beam current.

A BRIEF ANALYSIS OF NONLINEAR
FOCUSING

In this section, we summarize the results that were de-
rived in [9] and [10]. This analysis provides an equivalence
between a constant nonlinear focusing model as was used
in the simulations above and a realistic lattice comprising
of quadrupoles and sextupoles.

We start by expressing a Hamiltonian in cylindrical co-
ordinates in the absence of space charge forces. This can
be obtained from the Lorentz force [9].

H =
1
2
(p2

r +
l2

r2
) +

1
2
κ2(s)r2 cos(2θ)

1
3
κ3(s)r3 cos(3θ + α). (4)

The variable s is the distance along the axis, which is equiv-
alent to time for constant axial velocity. The momentum in
the radial direction is pr and l is the angular momentum.
The values of κ2(s) and κ3(s) depend upon the strength
of the quadrupole and sextupole magnets respectively and
also the velocity of the particle in the axial direction. The
angle α depends upon the relative orientation of the sex-
tupoles with respect to the quadrupoles. We use normalized
units in which the charge and mass of the particle are unity.
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It is assumed that the Hamiltonian is periodic in s with pe-
riodicity S, ie, κ2(s +S) = κ2(s) and κ3(s +S) = κ3(s).
It is further assumed that the average of κ2(s) and κ3(s)
over a period S is zero. That is,

〈κ2〉 =
1
S

∫ s+S

s

κ2(s)ds = 0 (5)

and the same for κ3. The angle brackets 〈· · ·〉 denote an
average over one period in the rest of this section. With
these conditions, κ2 and κ3 can in general be represented
in the form of a Fourier series as

κ2(s) =
n=∞∑
n=1

fn sin(
2nπs

S
) +

n=∞∑
n=1

gn cos(
2nπs

S
), (6)

and

κ3(s) =
n=∞∑
n=1

kn sin(
2nπs

S
) +

n=∞∑
n=1

ln cos(
2nπs

S
). (7)

Using the above expressions and performing a perturba-
tive canonical averaging procedure, it has been shown [9]
that the Hamiltonian can be reduced to the form

K3 =
1
2
(P 2

R +
L2

R2
) +

1
2
〈(κI

2)
2〉R2 (8)

−1
3
〈κI

2κ
I
3〉R3 cos(Θ + α) +

1
2
〈(κI

3)
2〉R4.

Where (PR, L,R,Θ) are the transformed, slowly varying
phase space variables. The superscript “I” represents an in-
tegration over s with a constant of integration chosen such
that the integral vanishes when averaged over a period S.
This notation will be used in the rest of this section.

In order for K3 to be independent of Θ, 〈κI
2κ

I
3〉 must

vanish. It is clear from Eqs. (6) and (7) that one way this
can be accomplished is if κ2(s) can be expressed as a pure
cosine series and κ3(s) as a pure sine series. Figure (5)
represents a practical design for κ2(s) and κ3(s) which ex-
actly satisfies this condition. This is a specific case where
the two lattices have equal periodicity. In this case, κ2(s)
and κ3(s) are periodic step functions alternating in sign and
with opposite parity, which is equivalent to a phase lag of a
quarter lattice period with respect to each other. It may be
noted that once the Θ dependence is eliminated, the non-
linear force is purely focusing and leads to a positive tune
shift. This force is identical to the one used in the PIC sim-
ulations. Numerical results have shown [9] that that con-
siderable improvement in the dynamic aperture can be ac-
complished even if 〈κI

2κ
I
3〉 does not completely vanish but

is small enough. This is a consequence of improved inte-
grability in the motion because of the weak dependence on
the transformed azimuthal coordinate Θ, which leads to the
angular momentum to be a conserved quantity over slow
time scales. When the dependence on Θ vanishes identi-
cally along the channel, the external focusing is the same
as that used in the PIC simulations of this paper, at least in
an averaged sense. However, to complete the analogy, the

Figure 5: A step function lattice that will lead to a near
integrable condition. The shorter steps represent the sex-
tupole function κ3(s) while the higher ones the quadrupole
function κ2(s).

perturbation expansion needs to be generalized to include
space charge forces.

When space charge effect are included, the Hamiltonian
expressed in Eq (4) is now given by

H =
1
2
(p2

r +
l2

r2
) +

1
2
κ2(s)r2 cos(2θ) (9)

+
1
3
κ3(s)r3 cos(3θ + α) +

1
v2

sγ3
φ(r, θ, s),

where φ(r, θ, s) is the space charge electrostatic potential,
vs is the axial velocity and γ is the Lorentz contraction fac-
tor. The phase space distribution function f evolves ac-
cording to the Vlasov-Poisson equation, which is given by,

df

ds
=

∂f

∂s
+ {H, f}. (10)

The space charge potential is related to f according to Pois-
son’s equation,

∇2φ(q, s) =
∫

dpf(q,p,s), (11)

where (q,p) are the phase space vectors.
Executing the canonical averaging procedure for this

system is a more involved procedure when compared to
the previous case where there was no space charge in the
Hamiltonian. This has been done in Ref. [10], where it is
shown that if the lattice satisfies the condition 〈κI

2κ
I
3〉 = 0,

along with other conditions imposed in the previous analy-
sis for the the beam with no space charge, the above system
of equations can be a transformed through a similar canon-
ical averaging procedure that leads to a Hamiltonian given
by,

K =
1
2
(P 2

R +
L2

R2
) +

1
2
〈(κI

2)
2〉R2 (12)

+
1
4
〈(κI

3)
2〉R4 +

1
v2

sγ3
φ,
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and the corresponding Vlasov-Poisson equations are,

dF

ds
=

∂F

∂s
+ {K,F} (13)

∇2φ(Q, s) =
∫

dPF, (14)

where F is the phase space distribution function in
the transformed, slowly varying coordinate system, and
(Q,P) are the transformed phase space vectors. Since the
external focusing component of the Hamiltonian is not de-
pendent on ”s” one can obtain equilibrium phase space dis-
tribution in the transformed reference frame that satisfies

F = F (H(Q,P)) (15)

This translates to a distribution that is close to equilibrium
in the original coordinate system, which remains stationary
over slow time scales.

The analysis in this section shows that a nonlinear, con-
stant focusing model for a beam with space charge effects
is equivalent in an averaged sense to an alternating gradient
focusing system with quadrupoles and sextupoles provided
the arrangement of the lattice satisfies certain conditions.
For this averaging process, it is assumed that the lattice pe-
riod ”S” is sufficiently small compared to a betatron oscil-
lation period.

SUMMARY

This paper first summarizes a more detailed work based
on PIC simulations [3] showing that beam halos may be
controlled by a combination of nonlinear focusing and col-
limation. Motivated by the well known results that reduced
rms mismatch leads to reduced halo formation, it is first
shown that nonlinear focusing damps the rms oscillations
of the beam thereby reducing its mismatch. However, the
damping is accompanied by emittance growth causing the
phase space distribution to expand and populate particles
well beyond the width of the original phase space distri-
bution. To compensate for this emittance growth, the high
amplitude particles are scraped off and it is shown that con-
tinued evolution of the beam does not reproduce a halo.

This is followed by a discussion of the nonlinear focus-
ing used in the PIC simulations. Summarizing the work in
Refs. [9], [10], the discussion shows that an equivalence
exists between a nonlinear, constant focusing model as that
used in the PIC simulations and an alternating gradient fo-
cusing system. The analysis of the nonlinear focusing is
important because the extension to a continuous focusing
model from an alternating gradient one is not straight for-
ward for such nonlinear transport systems. The analysis
shows the certain conditions between the arrangement of
the quadrupoles and sextupoles need to be satisfied in or-
der to produce an equivalent constant nonlinear focusing
channel. In general, a system that is closer to a constant fo-
cusing model implies improved integrability which in turn
leads to a larger dynamic aperture.

This work could find applications in various high current
linacs where beam halos are an issue. To include nonlinear
components in rings requires more detailed analysis due to
the effect of resonances and beam instabilities. However, it
has been shown here that the nonlinear damping is a tran-
sient process that takes place in 1-2 rms oscillations. Once
the collimation is achieved, the beam could be adiabatically
matched to a linear focusing section. Such a matching pro-
cedure has been studied by Batygin [16]. The possibility
of realizing such a procedure experimentally would greatly
contribute toward improving the performance of accelera-
tors using high intensity beams.
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