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Abstract
Radially polarized radiation is amplified by a free

electron laser (FEL) in which the undulator is an ion
channel with uniform density.  For long betatron
wavelengths and low gain per pass, the gain at a given
distance from the axis is three-eighths the gain of a
periodic ion channel laser with the same wiggler
parameter.  For amplification of short wavelengths by an
ultrarelativistic electron beam, a uniform-density ion
channel requires a much higher ion density than a periodic
ion channel laser.

INTRODUCTION
Consider a cold, uniform, round electron beam

propagating in a round ion channel of constant density.
When the ion density in the laboratory equals the electron
density times 1/γ2 (where γ is the beam’s relativistic
factor), force-free beam transport may be obtained [1].  If
a beam is injected off-axis, calculations indicate that
transverse “betatron” oscillations of the beam centroid
may amplify linearly polarized radiation to create an “ion
channel laser” [2, 3, 4].  When a mismatched beam is
injected on-axis, the beam undergoes radial betatron
oscillations that are stationary in the laboratory [5].

We show that radially polarized radiation may be
amplified by these radial oscillations, to create a radially
polarized ion channel laser.  In the low-gain-per-pass,
long betatron-wavelength limit, the amplification is three-
eighths that of a periodic ion channel laser [6] with the
same transverse quiver velocity.

RADIAL MOTION
To model “force” bunching [3, 4, 6], radiation is

included in the transverse dynamics.  We consider a cold
beam with nonrelativistic electron motion in the beam
frame.  This requires that the ion channel act as an
undulator, in which an electron’s velocity deviates by less
than the angle 1/βγ from the axis, where β > 0 is the beam
velocity divided by the speed of light c.

Consider a stationary ion channel with entrance at zlab =
0, whose density in the laboratory frame is ni-lab for 0 <
zlab < Llab and r < rc.  Here, zlab and r are axial and radial
coordinates, while Llab and rc are the channel’s length and
radius.  In the frame moving with the beam as it enters the
undulator, the ion channel density is n0 = γ||ni-lab, where
β|| > 0 and γ|| describe the beam’s axial velocity.  For
r < rc , the radial electric field from the ion channel is

( ) 00 2/ ε−= renrEc ,                           (1)

where e < 0 is the electron charge and ε0 is the
permittivity of free space.  The magnetic field in the beam
frame is in the azimuthal (φ) direction, with Bc = −β||Ec /c.

We now consider the amplification of weak radiation
when the beam undergoes radial betatron oscillations that
are stationary in the laboratory.  For a radially polarized
wave traveling forward, the radial electric field in the low-
gain-per-pass limit is

( ) ( ) ( )rrrr tzkrEtzrE φ+ω−= cos,, 0 .            (2)

The azimuthal magnetic field Br equals Er /c, with wave
number kr > 0, phase φr , and frequency ωr = ckr > 0.

Consider a perturbation of the annular beam segment
that enters the ion channel when (z, t) = (0,0) and
oscillates about equilibrium radius r.  When the perturbed
axial motion is a uniform drift with nonrelativistic
velocity v0, the radial perturbation δ(t) obeys
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where m is the electron mass.  The first term describes the
radial electric field from the beam when the laboratory-
frame betatron wavelength greatly exceeds the beam
radius.  The terms proportional to v0 result from the
magnetic fields Bc and Br.  For laminar flow,
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(1+β||v0/c)n0πr2.  To lowest order in δ, eq. (3) gives
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(For brevity, we have suppressed the dependence of
functions upon r in our notation.)  According to eq. (4),
the radial velocity of an electron is the sum of a betatron
oscillation and forced oscillation from the radiation.  The
betatron oscillation’s radial velocity is

( ) ( ) ][ 2/1
0||1sinˆ, ββ φ+β+ω−= tcvcatzv wc ,              (5)

where 2/1
0

2
0 )/( ε=ωβ men  is the electron plasma

frequency.  In the laboratory, the betatron wavelength is
λβ-lab = (2πβ||γ||c/ωβ)(1+v0/β||c−β||v0/2c) ≈ 2πβ||γ||c/ωβ; the
betatron frequency is ωβ-lab = (ωβ/γ||)(1+β||v0/c−β||v0/2c)-1 ≈
ωβ/γ|| = (ni-labe

2/ε0mγ||)
1/2.  Letting kβ≡β||ωβ/2c define an

effective wavenumber for the betatron oscillations yields
( ) ( )βββ φ+ω+−= tzkcatzv wc sinˆ, .                    (6)

Since λβ-lab depends upon the electron’s axial velocity, kβ

≠ ωβ /β||c.  The amplitude wâ  and phase φβ are determined

by the initial conditions of the beam segment (i.e., radius
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and radial velocity).  Our assumption of nonrelativistic
electron velocities in the beam frame requires wâ  << 1.

The forced oscillation from the radiation obeys
( ) ( )rrrrr tzkcatzv φ+ω−= sin, ,                     (7)

with
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In eq. (8), ( )cvrr 01ˆ −ω≡ω  and ( )cv 21ˆ 0||β+ω≡ω ββ  are

the angular frequencies of the radiation and betatron
oscillations experienced by an electron traveling with
velocity v0.  Note that 1)ˆˆ( −

β ω−ω∝ rra .

A time-dependent axial velocity may be approximated
to arbitrary accuracy by constant-velocity segments.
Thus, by letting the velocity v0 in eq. (8) equal the average
axial velocity in the undulator, eqs. (6)–(8) approximately
describe small time-dependent axial velocities.

AXIAL MOTION
To describe “inertial” bunching, radiation is included in

the axial dynamics [3, 4, 6].  We consider the Compton
regime where the axial space-charge forces may be
neglected.  An electron whose initial axial position z is 0
and radius is r obeys, to lowest order in the radiation field
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where radius ≈ r on the right hand side (RHS).  The
solution with initial conditions z(0) = dz/dt(0) = 0 is the
sum of three terms describing radiation-independent axial
motion, inertial bunching, and force bunching.  The
radiation-independent motion obeys d 2z0 /dt 2 = (e/m)vc Bc

where z ≈ v0 t on the RHS of the equation, with v0

equaling the average axial velocity in the undulator.  The
solution with initial conditions z0(0) = dz0 /dt(0) = 0 is
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Equation (10) gives the average axial velocity as
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Our assumption of nonrelativistic velocities in the beam
frame requires that the plasma skin depth in the beam
frame c/ωβ >> β|| wâ r/2.  In the laboratory, this

requirement is λβ-lab >> πβ||
2

wâ γ|| r.

The inertial bunching term [3, 4, 6] results from the
axial radiation force on an electron, obeying d 2zi /dt 2 =
(e/m)vc Br where z ≈ z0(t) on the RHS.  For wâ  << 1,

approximating z0(t) ≈ v0 t on the RHS for the fundamental
FEL mode gives the solution with initial conditions zi (0)
= dzi /dt(0) = 0:
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where rω+ω≡ω β+ ˆˆ  and rω−ω≡ω β− ˆˆ .  For effective

amplification of radiation, +− ω<<ω || , so that
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The force bunching term [3, 4, 6] results from the

transverse radiation force on an electron, obeying d 2zf /dt 2

= (e/m)vr Bc where z ≈ z0(t) on the RHS.  For wâ  << 1,

approximating z0(t) ≈ v0 t on the RHS for the fundamental
FEL mode gives the solution with initial conditions zf (0)
= dzf /dt(0) = 0:
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In contrast to a periodic ion channel laser [6], the inertial
bunching term does not equal that from force bunching
for wâ << 1.

GAIN
The change in an electron’s energy from interaction

with the radiation obeys

rcrr EevEev
dt

d +=ε ,                               (15)

where vr , vc and Er are evaluated at radius r and the axial
position z(t) calculated in the previous section.  The
change in an average electron’s energy is given by
averaging over the phase of the radiation φr .  To order
E0

2, the first term on the RHS does not contribute to this
average.  When motion in the beam frame is
nonrelativistic (c/ωβ >> β|| wâ r/2), eq. (15) becomes
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where rkkk +≡ β+  and rkkk −≡ β− .  For inertial bunching,

eq. (13) gives
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For force bunching, eq. (14) gives
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Let ∫ φε≡ε∆
T

r
dtdtd

0
 be the average energy change

per electron from interacting with radiation.  Here, T is
the ion channel transit time in the beam frame.  The
average energy change ∆ε is the sum of the contributions
from inertial and force bunching.  For +− ω<<ω || , eqs.

(16) and (17) give the inertial bunching contribution
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while eqs. (16) and (18) give the force bunching
contribution
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In the beam frame, the energy transferred to the forward

wave within a transverse area A during a time t0 is
−n0Aβ||ct0∆ε for v0 << c.  The time-averaged Poynting
vector of the radiation is < S > = ε0cE0

2/2, with energy
density < S >/c.  Since the relative velocity between the
forward wave and undulator is (1+β||)c, the
electromagnetic energy passing through the undulator is
(< S >/c)(1+β||)ct0 A.  The radiation energy gain per pass at
radius r therefore obeys
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The gain is the sum of the gain from inertial bunching and
the gain from force bunching.  For γ >> 1, the gain from
inertial bunching is given by eqs. (19) and (21)
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In the laboratory frame, the maximum transverse
velocity divided by c is obtained from the radial and axial
velocities in the beam frame when |vc | is largest:
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where wa  ≈ wâ  is the wiggler parameter.  For  γ >> 1, k+

= kβ + kr = 1.5γ||ωβ-lab /c, where ωβ-lab is the laboratory-
frame betatron frequency.  Thus, the gain from inertial
bunching at radius r is given to lowest order in the
wiggler parameter aw as
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where ne-lab is the e-beam density and Llab is the ion
channel’s length measured in the laboratory frame.

For γ >> 1, the gain at radius r from force bunching is,
to lowest order in wa ,
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Note that gainf depends upon the amplitude and phase of
the betatron oscillations, while gaini depends only upon
their amplitude.

Here,
( ) ( ) lablabrlab TcvcvT ]γ2//12/1[ 2

00 −ω−+ω=ω −−β− ,    (26)

where Tlab = Llab /β||c is the ion-channel transit time and
ωr-lab is the radiation’s angular frequency in the
laboratory.  For an ultrarelativistic beam undergoing
many betatron oscillations, maximum gain occurs for
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For γ >> 1, |gainf /gaini | is ~rγωβ-lab/2caw, so that the
gain from inertial bunching dominates when wa  >>

πrγ/λβ-lab.  Thus, for a wiggler parameter comparable to
unity, inertial bunching dominates for long betatron
wavelengths obeying λβ-lab >> πrγ.  In this case, the gain
is 3/8 times the gain of a periodic ion channel laser [6] or
planar magnetostatic undulator with the same quiver
velocity, while the wavelength experiencing maximum
gain is modified by the value of v0 in eq. (27).  The gain is
smaller than that of a periodic ion channel laser for two
reasons.  First, force bunching is small for long betatron
wavelengths, while it nearly equals the inertial bunching
in a periodic ion channel laser.  Second, the laboratory
betatron wavelength depends upon the beam energy, so
that kβ = β||ωβ /2c < ωβ /β||c.  This reduces the gain from
inertial bunching [2, 3, 4].

When γ >> 1 and λβ-lab < πrγ, the above formulas apply
when the beam-frame velocities are nonrelativistic ( wa

<< λβ-lab/πrγ), in which case force bunching dominates.

 DISCUSSION
A constant-density ion channel, in which the phase-mix

damping of betatron oscillations is negligible, may be
used to amplify radially polarized radiation.  For an
ultrarelativistic beam with a long betatron wavelength, the
gain is three-eighths times the gain of a periodic ion
channel laser with the same wiggler parameter.

A periodic ion channel with wiggler parameter
comparable to unity and period λw-lab equaling ten times
the beam radius requires an ion density in the laboratory
of ~40πε0mc2/e2λw-lab

2 for γ >> 3 [6].  A constant-density
ion channel with λβ-lab equaling ten times the beam radius
requires an ion density that is a factor of πγ/10 times as
large.  Thus, for ultrarelativistic beams, amplification of
short wavelengths may be achieved with a much smaller
ion density if a periodic ion density channel is used.
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