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Abstract
It is important to understand the influence of wigglers

and undulators on the beam dynamics in design and
optimization of  a storage ring, especially when the
storage ring runs on a low emittance mode. We present an 
analytic model of the undulator field in HLS, which can
be used in the tracking study to evaluate the effects of it. 
Coefficients needed by the model are generated by fitting
to the results of a numerical field caculation. Fringe fields
are included in this model. Then we use three different
methods to track particles through the undulator, and
compare the results. 

INTRODUCTION
Two insertion devices are installed in the HLS storage

ring, a superconductive wiggler and a planar pure
permanent-magnet undulator. They work well when the
storage ring runs on the general purpose light source
(GPLS) mode. The operation of an optical krystron is also
on plan.

Now we are trying to find a low emittance mode lattice
that is suitable to insertion devices. In this condition, the
nonlinear components of the insertion devices magnetic
field maybe one of the main limitations of the dynamic
aperture[1]. So the tracking study of the particles through
the insertion devices is necessary to get the transfer maps,
which is a prerequisite for the study of particle dynamics
of the whole ring. We use three methods, Runge-Kutta
integration, symplectic integration, and generating
function to do tracking and to construct transfer maps. An 
analytic field model is necessary or convenient to use 
these methods.

In this article, we build a field model of the undulator in 
the HLS storage ring, and get the transfer map of it. The 
similar methods can also be used to treat the wiggler and 
the optical krystron in HLS. 

FIELD MODEL FOR THE UNDULATOR
IN HLS 

The undulaor (UD1) in HLS is designed to produce
tunable, quasi-monochromatic, partially coherent radia-
tion, the frequency of which is in the range from VUV to
soft X-ray. Some parameters of the UD1 are given in
Table 1. 

The three-dimensional magnetic field data of UD1
versus position is calculated by RADIA[2]. To get the
magnetic field model, we treat the periodic field and the
fringe fields separately.  The periodic field is described as
the following form:

Table1: Parameters of the undulator in HLS 
Magnet type Permanent magnet 

Period length 0.092 m 

Period number 29

Range of the magnet gap 0.036 ~ 0.096 m 

Peak field 0.456 ~ 0.06 T

Total length 2.67 m
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where kyi
2 = kxi

2+ki
2, is the wave number of ith

harmonic along longitudinal direction, Bi is its peak
magnetic field amplitude, 92 mm is the period length
of the undulator. These expressions of magnetic field
satisfy Maxwell’s equations.

/iki 2

By choosing the gauge Az = 0, the corresponding vector
potential A = (Ax,Ay,0) is given by the following form:
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Because of the symmetry of the periodic magnetic field,
only the odd harmonics are used to fit the magnetic data.
Given a calculation of the field at a set of points, the
problem is to find a sum of terms, which minimize the
variance between field calculation data and fit data. The
fit results are listed in Table 2. Field calculation results
and fit curves of By as a function of x, y and z are shown
in Figure 1. Only 3 terms are used for the fit. The peak
field is about 0.41 T and the RMS difference between
calculation data and fit data is 8.5 Gauss, which gives an
RMS to peak field ratio of 0.17%. 

Table2: Fit results of the periodic field
i

iB (T) xik (/mm) yik (/mm) ik (/mm)

1 -4.1299e-1 -1.1425e-2 6.9244e-2 6.8295e-2

3 2.7615e-5 6.7879e-2 2.1584e-1 2.0489e-1

5 7.6398e-4 5.0851e-3 3.4152e-1 3.4148e-1
____________________________________________
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Figure 1: (a) By as a function of z at x = y = 0. (b) By as a
function of y at x = 0, z = 138mm. (c) By as a function of x
at y = 0, z = 138mm.

The fringe fields are described as the following form:
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where kyi
2 = kxi

2+ki
2, ki and Bi have the same meaning as in 

equation (1) except that 300 mm here. These 
expressions also satisfy Maxwell’s equations.

By choosing the gauge Az = 0, the corresponding vector
potential A = (Ax,Ay,0) is given by the following form:

)cos()sin()(

)()sinh()sin(

)()cosh()cos(1

21 zkBzkBzAwith

zAykxk
kk

k
A

zAykxk
k

A

iiiii

i
iyixi

iyi

xi
y

i
iyixi

i
x

  (4)

We use the similar method with what we use in the
periodic field case to fit fringe fields. But in the case of
fringe fields, both the odd and the even harmonics must
be used to fit the data, and more terms are needed. In fact,
we used 20 terms to make sure that the RMS difference
between calculation data and fit data is 5.7 Gauss which
gives an RMS to peak field ratio of 0.11%. Figure 2
shows field calculation results and fit curves of By as a
function of x, y and z.

Since the field model has already been calculated, the
Hamiltonian of charged particle motion in either period
field or fringe fields in the paraxial approximation can be
written as[3]:
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where px,y = Px,y/P0 is the scaled transverse momenta, P0 is
the nominal mechanical momentum, a = qA/P0c is the
scaled vector potential, is the relative energy
deviation.

P/E 0c

Figure 2: (a) By as a function of z at x = y = 0. (b) By as a
function of y at x = 0, z = 2623mm. (c) By as a function of 
x at y = 0, z = 2623mm.

TRACKING METHODS AND RESULTS
After getting an analytic model of the undulator field, 

we use three methods to track particles through the
undulator.

The first one is solving the equations of motion with a 
Runge-Kunge type integration (RK). This method is not
symplectic.  And when the undulator has many periods,
this method is rather slow. But because it is derived 
directly from the equations of motion, it can be used to
verify other methods.

The second method is symplectic integration (SI)[4].
This method requires splitting each period of field into 
enough pieces, so it is also time consuming, especially for 
a long undulator or wiggler.

The third method is building a generating function
(GF)[5]. The generating function has a form :
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where subscript i and j represent the initial and final state 
of particles passing through the undulator.  Coefficients
are generated by fitting to the tracking results of
numerous particles with different initial states. This
procedure is also time consuming, but it is needed only
once. Tracking through the generating function is fast
and symplectic.

Figure 3 and Figure 4 show the tracking simulation
results of the three methods. Figure 3 (a) shows the
tracking results of x’

f as a function of xi. The result of SI
and the result of GF agree well, better than 0.001mrad.
The difference between RK and them is less than
0.01mrad. Figure 3 (b) shows y’

f  as a function of xi. The
results of SI and RK agree better than 0.002mrad, while
the difference between GF and them is less than
0.012mrad.
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Figure 3: (a) x’
f as a function of xi using three different

tracking methods in the case x’
i = y’

i =0 and yi = 10mm. (b) 
y’

f  as a function of xi.

Figure 4 (a) shows the tracking results of x’
f as a 

function of yi.  The results of GF and SI agree better than
0.001mrad, and the difference between RK and them is
less than 0.011mrad. Figure 4 (b) shows y’

f as a function 
of yi, and Figure 4 (c) shows the difference of y’

f using
the three methods as the function of yi.  As it shows, the 
further yi leaves the axis, the larger the difference is. But
the largest difference between SI and RK is less than
0.002mrad, difference between GF and RK less than
0.005mrad, and difference between SI and GF less than
0.007mrad.

If we only track particles through the periodic field, the 
tracking results of x’

f using the three methods agree better
than 0.001mrad. So the difference showed in Figure 3 (a)
and Figure 4 (a) attributes to the existence of fringe fields.
The reason why the tracking results of RK and SI do not
agree well in the fringe fields needs more particular
analysis later. The difference between GF and the other
two methods showed in Figure 3 (b) is also reasonable. In
the fitting data used to calculate the generating function
coefficients, the maximum of yi  is only 0.2mm. So it is 
natural that GF is no longer accurate when yi is much
larger than 0.2mm, 10mm in this case.  This fact is also
consistent with Figure 4 (c), and it suggests that choosing
proper data to fit the generating function coefficients is
necessary. But why does GF agree well with SI and RK as
Figure 4 shows, when xi  = 20mm, which is much larger
than 0.2mm, the maximum of the fit data xi? In Figure 1 
and Figure 2, we can see that when yi changes 10 mm, By

changes 0.1T. Correspondingly when xi changes 20mm,
By changes only a little more than 0.01T. So the change of
xi affects much little than the change of yi.

CONCLUSIONS
The accurate undulator field model including fringe

fields represented here makes possible the symplectic

mapping which is necessary in long term tracking. In the
three tracking methods, GF is chosen for later tracking
simulation because of its speed and symplecticity. Similar
methods can be used to treat the wiggler and the optical
krystron in HLS, generating their models, building their
generating functions, and thereby evaluating their
dynamical effects by tracking simulation.

Figure 4: (a) x’
f as a function of yi using three tracking

methods in the case xi  = yi  = 0 and xi  = 20mm. (b) y’
f  as

a function of yi. (c) Difference of y’
f  between either two 

of the three tracking methods as a function of yi.
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