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Abstract

Damping ring is one of the major issues in the future lin-
ear collider (ILC). We discuss the design of the dogbone
damping ring and its performance including the emittance
growth and the dynamic aperture related to the nonlinear-
ities of the wigglers and the space charge effects. In this
paper, we use the ring lattice borrowed from A. Wolski
(Version 6.4.1).

INTRODUCTION

A unique characteristic of the dogbone damping ring[1]
is its circumference, 17 km, as shown in Table 1. The long
circumference is suitable for the pulse structure of the lin-
ear collider with a relatively conservative scheme of the in-
jection and the extraction. The dogbone damping ring has
a long straight section to reduce the construction efforts by
sharing a part of tunnel with the main linac. Therefore, one
of the complications is the space charge effects which is
arisen in the long straight beam-line, even though an xy-
coupling try to reduce those effects. In addition, a long
wiggler section is necessary for the dogbone compared
with conventional designs to obtain the enough damping
time while keeping the equilibrium emittance small. An-
other complication comes from nonlinear effects of the
wiggler magnets[2]. In this article, we present results of
tracking simulations for the wiggler nonlinear effects and
the space charge effects in the dogbone damping ring.

Table 1: Machine parameters of the dogbone damping ring.
Parameter Symbol Unit
Energy E 5 GeV
Circumference C 17 km
Betatron tunes νx/νy 76.31/41.27
Synchrotron tune νs -0.071
Emittance εx 5×10−6 m
Bunch length σz 6 mm
Momentum spread σδ 0.13 %
Momentum
compaction factor αc 1.24×10−4

Energy loss per turn U0 20.4 MV
RF frequency fRF 500 MHz
RF voltage Vc 50 MV
Wiggler bend radius ρw 10 m
Wiggler length Lw 468 m
Wiggler period λw 0.4 m
Long. damping time τd 28 msec
Particles/bunch N 2×1010

Chromaticities ξx/ξy -124/-56
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WIGGLER FRINGE FIELD

The total Hamiltonian in the vertical plane of the ring
into which wigglers are inserted can be expressed by[3]

H = H0 +
Lw

4ρ2
w

y2 +
Lw

12ρ2
w

k2y4, (1)

whereH0 is the Hamiltonian without the wigglers,Lw is
the length of the wiggler section,ρw is the bending radius
of the wiggler,k = 2π/λw, λw is the period length of the
wiggler. Therefore, the associated betatron tune shift due
to the wigglers is obtained from

∆νy =
β̄y

4π

(
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w
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3ρ2
w
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)
, (2)

whereβ̄y is the averaged vertical beta function in the wig-
gler section.

Alternatively, the Hamiltonian is parameterized by using
an action variable,

H = 2π
(
νx0Jx + νy0Jy + νz0Jz + cxxJ2

x + cyyJ2
y

+czzJ
2
z + cxyJxJy + cyzJyJz + czxJzJx + · · ·

)
. (3)

In the case ofJx = Jz = 0, the vertical betatron tune can
be approximately written by

νy =
1
2π

∂H

∂Jy
= νy0 + 2cyyJy. (4)

By comparing Eq. (2) with Eq. (4), the amplitude depen-
dence of the vertical betatron tune due to the wigglers can
be calculated by

cyy =
β̄2

yLwk2

12πρ2
w

. (5)

In order to investigate dynamic apertures of the ring de-
scribed in the later section, we perform a particle-tracking
simulation by using SAD[4]. SAD is a integrated code for
optics design, particle tracking, machine tuning, etc., and
has been used for years at several machines such as KEKB
and KEK–ATF. In SAD, the wiggler bending field is ap-
proximated by trapezoids, and the Hamiltonian up toO(y 4)
are included in the model. Therefore, the primary nonlin-
ear effect of the fringe field of the wiggler magnets are
included in the tracking by SAD. Table 2 shows the non-
linear coefficient,cyy, estimated by the tracking with and
without the nonlinearity of the wigglers. The difference
between with and without the nonlinearity is+6070 from
Table 2. Using Eq. (5), the nonlinear coefficient due to the
wigglers can be calculated to be+5920 analytically, using
β̄y = 13.8 m and the parameters in Table 1. Consequently,
the tracking simulation well reproduces the octupole-like
component of the wigglers. Table 2 also shows the non-
linear coefficient with and without sextupole magnets. The
contribution of the nonlinear effects is about−9000 from
the sextupole magnets.
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Table 2: Nonlinear coefficientcyy of the damping ring es-
timated by the tracking simulations.

sextupoles w/o nonlinear wig. w nonlinear wig.
ON -1230 +4840
OFF +7630 +13780

SPACE CHARGE EFFECT

In this simulation, the space charge is calculated in two
steps: (1) calculate the equilibrium 6D beam envelope
including the synchrotron radiation and the space charge
effect, and (2) track particles with a weak-strong model
assuming the beam envelope obtained from (1). We as-
sumeN = 2 × 1010 and the minimum couplingεy/εx =
0.2%. The space charge force is applied at the entrance
of about 10,000 elements all over the ring, and calcu-
lated with a Gaussian distribution in all coordinates. We
have applied an ultra-relativistic approximation to obtain
the space-charge potential as

V (x, y, z) = U(x, y)
1√

2πσz

exp
(
− z2

2σ2
z

)
, (6)

whereU(x, y) is a two-dimensional electrostatic potential
for the Gaussian beam distribution. The potentialU is basi-
cally a function ofX/σX , Y/σY , andr = σY /σX , where
X andY denote the major and minor axes of the beam. We
approximateU by cubic splines in these parameters to cal-
culate the force, and it satisfies the symplectic condition up
to the machine precision.

Figure 1: The horizontal(upper) and the vertical(lower)
emittance growth due to the space charge effect. The syn-
chrotron radiation is turned off. The emittances increase
almost linear in time. It will be safe if the growth rate is
much smaller than the synchrotron radiation excitation.

We have tracked particles with this space-charge model
of the dogbone damping ring and estimated the emittance
growth. Typically, the emittance increases linearly in the
number of turns as shown in Fig. 1. It looks like a diffusion
process due to the nonlinear component of the force. Thus,
we can estimate the diffusion rate for the given lattice tunes,
(νx, νy). The result is shown in Fig. 2. Although several

resonance lines which cause the emittance growth are seen,
there remains wide area in the tune space where the growth
rate is less than 20% of the radiation excitation.

Figure 2: The tune space of the horizontal(upper) and verti-
cal(lower) emittance diffusion rate due to the space charge
effect. Darker area has smaller diffusion rate, and the red
line shows 1/5 of the synchrotron radiation excitation. Sev-
eral resonance lines are seen.

DYNAMIC APERTURE

The dynamic aperture can be defined as a stability for
one damping time. The damping time of the dogbone ring
is 28 msec which corresponds to 500 turns. It is difficult
to apply an analytic approach or a perturbation method be-
cause the strong sextupole magnets and the long wiggler
section cause the strong nonlinearity. Therefore, we esti-
mate the dynamic aperture by the tracking simulation. We
perform the tracking by SAD to investigate dynamic aper-
tures. Six canonical variables,x, px, y, py, z, andδ are
used to describe the motion of a particle, wherepx andpy

are transverse canonical momenta which are normalized by
the design momentum,p0, andδ is the relative momentum
deviation fromp0.We limit the initial conditions toy = x,
px0 = 0, py0 = 0, andz = 0 to evaluate the acceptance of
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Figure 4: Tune survey of the dynamic aperture: (a) without wiggler nonlinearity and space charge, (b) with wiggler
nonlinearity, without space charge, (c) with wiggler nonlinearity and space charge. The red lines show acceptable regions.
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Figure 3: Comparison of the dynamic aperture including
the wiggler nonlinearity and the space charge effect (solid),
the wiggler nonlinearity without the space charge (dotted),
and without both (dashed).

the injected beam rather than the lifetime at the equilibrium
state. The injected beam is a round shape in the transverse
direction and coherent oscillations due to injection kick-
ers are negligible. We also survey a momentum aperture
within ±3 %. As a criterion of the stability, the maximum
amplitude of the particle orbit is within 10 cm in thex and
y coordinate during 500 turns of the tracking.

Figure 3 shows the dynamic apertures obtained from the
tracking simulations without and with the wiggler nonlin-
earity and the space charge effect. No machine error is
included in the lattice. The transverse acceptance for the
initial condition is expressed byγ2Jx0 = γ2Jy0, where
2Jx,y is the Courant-Snyder invariant andγ is the Lorentz
factor. Momentum acceptance is expressed byδ0 which is
the initial momentum deviation from the design momen-
tum. The working point isνx/νy = 76.31/41.27. There is
no significant difference between with and without wiggler
nonlinearity and the space charge. Figure 4 shows tune sur-
veys of the dynamic apertures. The initial condition of the

transverse acceptance is also restricted byγ2Jx0 = γ2Jy0.
The aperture is defined by the minimum acceptance within
the momentum range of±1 %. The lighter color indicates
the larger dynamic aperture and the red contour shows 2
σ of the injected beam size. The normalized emittance of
the injected beam is assumed to be 0.1 m in the horizontal
and vertical plane. The third order resonance is found in
the horizontal tune. However, the dynamic apertures can
be kept sufficient for the injected beam assumed here even
though wiggler nonlinearity and/or the space charge effect
are included in the tracking simulations.

CONCLUSION

We have studied the emittance growth due to the space
charge and the dynamic apertures with the nonlinear com-
ponents of the wigglers together with the space charge. Re-
sults from the simulations show that those are all within
the acceptable level for requirements of the linear collider.
There are big area in the tune space where those effects
are not serious. Further study with orbit and optical errors
should be carried out to realize the project.
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