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Abstract

Several damping ring designs for the International Lin-
ear Collider have been proposed recently. Some of the
specifications, such as circumference and bunch train, are
not fixed yet. Designers must make a choice anyway, se-
lect a geometry type (dog-bone or circular), an arc cell
type (TME or FODO), and optimize linear and nonlinear
parts of the optics. The design process includes straight-
forward steps (usually the linear optics) and some steps not
so straightforward (when nonlinear optics optimization is
affected by the linear optics). A first attempt at automat-
ing this process for the linear optics is reported. We first
recognize that the optics is defined by just a few primary
parameters (e.g., phase advance per cell) that determine
the rest (e.g., quadrupole strength). In addition to the ex-
act specification of circumference, equilibrium emittance,
and damping time, there are some other quantities, which
could be optimized, that may conflict with each other. A
multi-objective genetic optimizer solves this problem by
producing a population of best-ranked solutions on a multi-
dimensional surface from which one solution can be chosen
by the designer. The application of the NSGA-II optimizer
to a damping ring of FODO cells is presented.

INTRODUCTION

Several lattice designs for the damping rings of the In-
ternational Linear Collider have been proposed [1]. They
represent a sampling of possible circumference, layout (cir-
cular or dog-bone), and arc cell types (FODO or TME).
Though the the above parameters have not been fixed at this
time, beam specifications such as the normalized equilib-
rium horizontal and vertical emittances, damping time, and
bunch length are fixed and not likely to change. Typically,
a lattice results from a mixture of choices a designer makes
(i.e., number of arc cells) and fitting routines of a lattice-
matching program (strength of quadrupoles for a match-
ing section). Then properties of the lattice are assessed,
and probably more design iterations follow. Such a proce-
dure was spelled out in [2]. For the present damping ring
types and a continuum of possible circumference values,
one might benefit from an automated procedure that could
generate these lattices for any circumference.

We start by recognizing that a ring definition, consisting
of a string of dipoles, quadrupoles, sextupoles, wigglers,
and drift spaces, is very detailed but can be characterized
by only a few independent primary quantities. For exam-
ple, the phase advance and length for an arc cell are pri-
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mary quantities while the strengths of the quadrupoles are
derived from those quantities. One can define a full set of
primary parameters that can then produce a complete ring
with proper magnet definitions, whether or not the ring ful-
fills any desired criterion. Such complete rings can be cre-
ated by scripts running lattice-matching programs.

The assessment of the above lattice definitions can be
done automatically as well. It may consist of simple calcu-
lations of equilibrium beam properties, and could include
more complex calculations such as dynamic aperture or
collective effects. Each definition is characterized as ei-
ther an exact specification or a desirable property that has
to be maximized or minimized. The assessment is none
other than a list of numbers that are functions of the origi-
nal primary parameters.

Our goal is to generate a set of one or more lattices of a
particular style and layout that fulfills the exact specifica-
tions and maximizes the values of the desirable properties,
some of which may unfortunately oppose each other. We
therefore cast the design process as an optimization of mul-
tiple objectives, for which software has been recently been
developed and is easily available, e.g., the Non-Dominated
Sorted Genetic Algorithm, version 2 [3]. Adopting termi-
nology from the field of optimization, the primary param-
eters are variables, the exact specifications are constraints,
and the desirable properties are objectives.

The original approach to this work on optimizing damp-
ing rings was the summing of the objectives with individual
weighting factors. This was clumsy when more than two
objectives were used, and we could not get a feel for the
trade-off between objectives. The inclusion of constraints
added too much complexity. At that point, the author be-
came aware of recent papers by Bazarov [4, 5] that de-
scribed how the multi-objective genetic algorithm worked
and how ILC main parameters and a photoinjector source
were optimized.

OPTIMIZATION PROCEDURE

The multi-objective optimizer basically proceeds as fol-
lows. Some details are left out which can be found in [3].
The user provides a set of variables with their lower and up-
per limits. The first step is to generate a random sampling
of, say, a hundred sets of variables (population of a hun-
dred individuals). This initial random sampling is bound to
produce nonsense results, but some individuals will be rea-
sonable. The user-supplied script of functions calculates
the values for the constraint violations and objectives. The
algorithm reads in these values and ranks the individual
based on the results and selects the best 50% to keep for
mutation and crossing of the variables. The worse 50% are
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thrown away. Mutation refers to slight modification of the
variable values and crossing refers to exchanging the vari-
able values between individuals, all in the hope of finding
a better result.

A new population of a hundred is formed by the previ-
ous best and the new “children” individuals, and the above
step is repeated. The population spread in objectives, con-
straints, and variables will converge to a small volume in
their own multidimensional spaces. Though the conver-
gence cannot be proved mathematically, for physical sys-
tems with no pathologies, the convergence always seems
to occur.

The useful outcome of the algorithm is a distribution of
best objective values lying on a multidimensional surface,
which we’ll call a trade-off surface, though in the optimiza-
tion field it is called a Pareto-optimum surface. The user is
free to select any individual (i.e., a set of variables) on that
surface and be assured that no particular objective is unnec-
essarily inferior.

Another aspect of genetic algorithms in general is that
they are suited to cluster computing where the evaluations
of individuals can take place independent of each other.

APPLICATION TO DAMPING RING

A Tcl script was written to create a circular damping
ring with FODO arc cells and FODO wiggler cells in the
straight sections. Scripts for other types will be written
later. For the moment, injection straight sections were
omitted. The variables of the problem are: number of arc
cells and their length, number of wiggler cells and their
length, filling factor of dipole in FODO cell, wiggle period
and field, wiggler length in each wiggler cell, rf gap volt-
age. Note that we must somehow include a wiggler model
that relates the period, field, and aperture.

The constraints are: normalized emittance, damping
time, circumference, bunch length, and wiggler aperture.
Some of these constraints have a close relation to variables,
such as the damping time and the wiggler length, typically.
External models, such as the wiggler magnetic field model,
can be inserted into the optimization as a constraint.

Possible objectives are: nonlinear kick from strongest
sextupole (to maximize dynamic aperture), total wiggler
length (a cost), magnet count (a cost), wiggler aper-
ture (maximize physical aperture), wiggler nonlinearity
(strength times period), and rf gap voltage. Note that one
can have as an objective any variables. This is not an ex-
haustive list. One can add any characteristic of a damping
ring that may be relevant. In this implementation all objec-
tives are to be minimized. An objective that really needs to
be maximized (wiggler aperture) is multiplied by −1.

It takes about three minutes for a 2.4-GHz PC in our
Linux cluster to develop a full lattice and to calculate the
objective and constraint functions. Most of the time is ac-
tually used to fit the matching sections of the ring. Given
that the optimization problem is of very high dimension and
requires about a thousand iterations, we adopted a formula-

based model for calculating the objective and constraint
functions, which takes a few milliseconds. A population
of a thousand and a thousand generations takes about three
minutes to complete.

In order to better visualize the optimization, a simplified
version of the problem was formulated. For a 6-km FODO
cell ring, we reduced the set of variables, constraints, and
objectives in order to produce a trade-off surface that be-
comes a line in two-dimensional space. We decided on four
variables: the number of arc cells, their length, the wiggler
period, and the number of wiggler cells. The other vari-
ables were fixed to reasonable values. The three constraints
are the normalized emittance (8×10−6 m-rad), damping
time (25 ms), and circumference (6 km). The two objec-
tives are the nonlinear kick, which pushes for fewer arc
cells, and wiggler nonlinearity, which pushes for longer pe-
riods. Both of these objectives tend to increase the quantum
excitation, which is, however, constrained by the emittance
value. So we expect a trade-off between the objectives.
The sum (5) of number of constraints and objectives minus
the variables (4) gives the dimensionality (1) of the space
spanned by the trade-off. After 400 generations of 400 in-
dividuals, we get the trade-off shown in Figure 1. Each
point on the graph corresponds to a different set of vari-
ables.

Figure 1: Trade-off between the two objectives measuring
nonlinearities. The x-axis is a measure of sextupole non-
linearity.

For example, the solution corresponding to the lowest
sextupole nonlinearity is at a value of 10, which corre-
sponds to 92 arc cells, 58-m arc cell length, 8 wiggler cells,
10-m wiggler cell length (making the total length about 80
m), and a 0.36-m wiggler period. The algorithm doesn’t
“know” which calculated nonlinearity is more important;
it is up to the user to decide. In this particular case, it is
safe to assume that the nonlinearity from the sextupole is
more important. The range of solutions for the sextupole
nonlinear kick is a factor of two, and for the wiggler it is
a factor 1.1, which is small. Therefore one would select
the solution at the bottom of the sextupole nonlinear kick
range.

We present now the full problem with nine variables, five
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constraints and seven objectives, while noting that some of
the objectives are not really independent, nor do they have
to be. Not surprisingly, this high-dimension problem re-
quires a larger population and more iterations for conver-
gence. We expect additional trade-offs among the objec-
tives, though they may be complex. The dimensionality of
the trade-off surface is expected to be 3, so pair-wise plots
of objectives may only reveal a smeared projection of the
surface. See Figures 2 through 4 for some plots.

Figure 2: Pair-wise objective plots for best solutions. Many
objectives appear uncorrelated.

Figure 3: Pair-wise objective plots for best solutions. See
text for comment on rf voltage.

In these figures, the plots that are discernible as lines
may be interpreted as a trade-off between the two objec-
tives, some are directly due to constraints. A change in
constraint (e.g., bunch length) can completely change the
appearance of the objective plots (not shown.) The objec-
tive can also be plotted against the variables for further in-
sight.

Finally, when a solution is selected from the formula
model, the real lattice can be generated and characterized.

The rf voltage objective (range of 200-500 MV) turned
out to be surprisingly large compared to the energy loss per
turn (about 8 MeV) because of the relatively high momen-
tum compaction of a FODO cell. In any case, we can see

Figure 4: Pair-wise objective plots for best solutions. The
correlation between wiggler gap and wiggler nonlinearity
is due to the constraint from the wiggler model and the wig-
gler field solution near the upper range limit of 2 T.

the trade-off in Figure 3 between rf voltage and sextupole
nonlinearity, which are connected through the number-of-
FODO-cells variable. For a reasonable value of rf voltage,
say, 50 MV, a short bunch length can be achieved only with
a much shorter FODO cell and at the cost of higher nonlin-
earities. The seriousness of the problem may be reduced in
other types of damping rings.

CONCLUSION

Software tools for the algorithm and full-lattice genera-
tion have been implemented. We intend to apply this anal-
ysis to other damping ring types. The computation time is
an issue. The full lattice model is only feasible in runs that
require 100-200 iterations and 100 in population. For large
problem dimensions, only a formula model seems practi-
cal. Also for large dimensions, some tweaking of the opti-
mizer setting (iteration number versus population number)
may be required. We speculate that a reduced set of vari-
ables and objectives may be useful to analyze actual design
decisions.
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