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Abstract

A modified version of the Plasma Beat-Wave Accel-
erator scheme is presented, which is based on autoreso-
nant phase-locking of the nonlinear Langmuir wave to the
slowly chirped beat frequency of the driving lasers via adi-
abatic passage through resonance. Compared to traditional
approaches, the autoresonant scheme achieves larger accel-
erating electric fields for given laser intensity; the plasma
wave excitation is more robust to variations in plasma den-
sity; it is largely insensitive to the details of the slow chirp
rate; and the quality and uniformity of the resulting plasma
wave for accelerator applications may be superior.

INTRODUCTION

The Plasma Beat-Wave Accelerator (PBWA) was first
proposed by Tajima and Dawson [1] as an alternative to the
short-pulse Laser Wake-Field Accelerator. In its original
incarnation, two lasers co-propagating in an under-dense
plasma are detuned from each other by a frequency shift
close to the electron plasma frequency. The modulated en-
velope resulting from the laser beat resonantly excites a
large-amplitude, high phase velocity plasma wave suitable
for particle acceleration. Because plasma is not subject to
material breakdown, accelerating gradients can be much
higher than those of existing structures, and the requires
acceleration length can be dramatically reduced.

Because the PBWA relies on resonant excitation, it is
sensitive to the natural oscillation frequency of the plasma
electrons, which is a function of both the plasma density
(via the linear response at ω2

p = 4πe2n0/me for a plasma
with density n0) and the amplitude (through relativistic ef-
fects for large amplitude waves). The latter of these effects
was first studied by Rosenbluth and Liu [2], who showed
that the longitudinal field Ez is limited by relativistic de-
tuning to an amplitude given by the Rosenbluth-Liu limit:

ERL ≡ E0

[
16ω2

p

3ω1ω2

|E1||E2|
E2

0

]1/3

< E0 ≡
mcωp

e
. (1)

Here, E1,2 and ω1,2 are the electric fields and frequencies
of the two driving lasers, and E0 is the cold, non-relativistic
wave-breaking limit.

To overcome this detuning, Deutsch, Meerson, and
Golub (DMG) [3] proposed a chirped beat-wave excita-
tion scheme, where the laser frequencies are chirped down-
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ward starting from the linear resonance so as to compen-
sate for the change in the nonlinear frequency of the grow-
ing plasma wave. However, the DMG scheme sometimes
fails to produce appreciable phase-locking. Informed by
more recent results, we elaborate on a novel variant of the
chirped plasma PBWA concept which exploits autoreso-
nant phase-locking via Adiabatic Passage Through Reso-
nance (APTR) [4, 5]. Rather than chirping downward from
the linear resonance, we start with a frequency shift well
above the resonance, and then slowly sweep the beat fre-
quency through and below resonance. With this approach,
the final state of the plasma wave is insensitive to the exact
chirp history, and the excitation is more robust to imprecise
characterization of the plasma density.

AUTORESONANT EXCITATION

Due to the limited room, we only sketch our derivations,
highlighting relevant results; interested readers are directed
to [6, 7]. Our study uses an approximate, but widely-
used model of laser-plasma interactions. The plasma is
treated as a fully relativistic Maxwell-fluid electron system
in a stationary ion background. We restrict our analysis
to one-dimension and make the quasi-static approximation,
wherein we assume that the laser envelope does not ap-
preciably evolve on the time scale of the interaction with
the plasma electrons. In this approximation, the dynam-
ics depend solely on the coordinate ξ moving at the laser
group velocity vg: ξ ≡ t− z/vg. For a highly under-dense
plasma, ω2 � ωp, the dimensionless electrostatic potential
φ ≡ e

mc2 Φ satisfies the quasi-static equation,

d2φ

dξ2
=

ω2
p

2

[
1 + �a2

(1 + φ)2
− 1

]
, (2)

with the normalized vector potential �a ≡ e
mc2

�A⊥ given by

�a = 1
2

[
a1e

iψ1 ê+ + c.c.
]
+ 1

2

[
a2e

iψ2 ê+ + c.c.
]
, (3)

Defining the beat amplitude ε ≡ a1a2, the average in-
tensity ā2 ≡ (|a1|2 + |a2|2)/2, and the beat phase ψ ≡
ψ1 − ψ2, (2) can be obtained from the Hamiltonian

H(φ, p; ξ) =
p2

2
+

φ2

2(1 + φ)
+

ā2 + ε cos ψ

2(1 + φ)
. (4)

To transform (4) to action-angle coordinates useful for au-
toresonant analysis, we define the action as the phase space
area in an unperturbed orbit I ≡ 1

2π

∮
dφ p. Furthermore,
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Figure 1: Plasma wave excitation for (a) 10µm CO2 laser with intensity 2.7 × 1014 W/cm2 (ε = 0.02) and (b) 800 nm
Ti:Sa laser with intensity 2 × 1017 W/cm2 (ε = 0.09). Both excite accelerating gradients greater than the nonrelativistic
limit E0 and than that without a chirp. (c) demonstrates robust field excitations of 5-10GeV/m for density errors of order
±20% for the CO2 laser, and fields ∼ 250 GeV/m for density errors of order ±40% for the CPA system.

since the potential is a periodic function of the canonical
angle θ, we expand the last term in (4) as a Fourier series

ā2 + ε cos ψ

2(1 + φ)
=

(
ā2 + ε cos ψ

)∑
bn(I)einθ. (5)

We use a linear chirp such that ∂tψ = ωp(1 − αt) and
define the phase difference Ψ ≡ θ−ψ. Assuming that only
the slowly varying terms are relevant (n = 0,±1) we find

H = H0(I)− ωp(1− αξ)I + ε
∂b1

∂I cos Ψ + ā2 ∂b0

∂I . (6)

From this Hamiltonian, one can derive the conditions under
which the phase Ψ is trapped about a stable equilibrium and
autoresonance persists. In the linear regime, one can show
that the chirp α must be smaller than a critical value αc:

α ≤ αc ≈ 0.169ε4/3. (7)

As the plasma wave grows to large amplitude, nonlinear
effects make autoresonance more difficult to maintain, and
de-phasing occurs; the condition can be found in [6].

EXPERIMENTAL CONSIDERATIONS

Unfortunately, the PBWA does not have unlimited time
to be excited, as instabilities will eventually destroy wave
coherence. For cold plasmas and moderately intense lasers,
the oscillating two-stream (or modulational) instability de-
stroys plasma wave coherence for times approximately
equal to 5/ωpi, where ωpi is the ion plasma frequency [8].
Thus, for a total drive frequncy shift equal to δω, the chirp
rate is limited to α ≥ 0.2 ωp

ωi
δω = 2.3×10−3 δω for singly-

ionized Helium.
Below, we choose two experimentally relevant parame-

ter sets, one corresponding to a 10µm CO2 laser; the
other, to a 800 nm Chirped Pulse Amplification (CPA)
Ti:Sapphire laser system. We demonstrate how, beginning
with the laser frequency above the linear resonance and
then slowly decreasing it, one can robustly excite plasma
waves to amplitudes larger than the cold, linear wave-
breaking limit in times commensurate with onset of the os-
cillating two-stream instability.

CO2 Laser at 10 µm

For parameters roughly corresponding to the CO2 laser
at UCLA [9]. We envision two pulses of duration 100 ps
which enter the plasma at t = 0, central wavelengths near
λ = 10µm, and normalized intensities a1 = a2 = 0.14,
i.e., ε = 0.02. We choose a linear chirp, so that the
beat frequency is given by ∆ω(t) = ωp(1.15 + αt), with
α = 0.00065 chosen below the critical value αc = 0.0009
from (7). The results from simulations integrating the
quasi-static equation 2 are in Fig. 1. 1(a) demonstrates the
excitation of a uniform accelerating field Ez of 10 GV/m,
which is above the wave-breaking limit of E0 ≈ 8.8 GV/m.
The total chirp is modest, only about 1.5% of the laser
carrier frequency. For comparison, we include the simu-
lated envelopes of the longitudinal field for the resonant
case ∆ω(t) = ωp, and for the chirped DMG scheme
starting on linear resonance, ∆ω(t) = ωp (1− αt). The
resonant case demonstrates the characteristic RL limit of
Ez ≤ ERL ≈ 4.2 GV/m, whereas the DMG scheme fails
to achieve appreciable phase-locking, and the final plasma
wave amplitude is about the same as in the unchirped case.

An additional advantage is that autoresonant excitation
is very robust with respect to experimental mismatches be-
tween the beat frequency and the plasma frequency. Be-
cause one sweeps over a reasonably broad frequency range
and only need pass through the resonance, no precise
matching is required. In Fig. 1(c), we plot the final ac-
celerating gradient achieved via APTR when we vary the
value of ωp over a range of ±10%, from its “design” value
above, while keeping the laser parameters fixed. We see
large levels of excitation for a wide range in plasma varia-
tion, corresponding to density mismatch/errors up to 20%.

Ti:Sapphire Laser at 800 nm

For a Ti:Sapphire CPA laser in a singly-ionized He
plasma, with n0 = 1.4×1018 cm−3, so that ωp/ω̄ = 1/25,
and a laser duration T = 3.2 ps (chosen to correspond
to the modulational instability limit). We imagine two 1 J
pulses focused to a waist of w0 = 6µm for intensities of
I0 = 2.0 × 1017 W/cm2, so that, with λ ≈ 800 nm, we
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have a1 = a2 = 0.3, and ε = 0.09. We choose the laser
detuning ∆ω(t) = ωp(1.2 − αt), with α = 0.0025. The
resulting plasma wave excitation is shown in Fig. 1(b). We
see maximum longitudinal electric fields Ez ≈ 260 GV/m,
corresponding to ∼ 1.6E0 ≈ 0.25E0. For comparison,
we also plot the resonant case, for which detuning re-
sults in maximum fields corresponding to the RL limit
(16ε/3)1/3E0 ≈ 125 GV/m. Furthermore, Fig. 1(c) shows
the robustness of autoresonant excitation, for which density
imperfections of ±35% have little effect on the accelerat-
ing gradients achieved.

ELECTRON ACCELERATION

For the purpose of matched particle injection, some
phase-locking mechanism is desired. While the nonlinear
frequency of the Langmuir wave may be closely entrained
to the known drive frequency, this does not necessarily im-
ply that the absolute phase of the Langmuir wave is known.

Autoresonant excitation may provide good frequency-
locking either with comparably good or disappointingly
inferior phase-locking. Nevertheless, the sample parame-
ters used in the CO2 example demonstrate the plasma wave
phase can tightly lock with the drive phase, and remain so
until adiabaticity is lost and the excitation saturates. We
show these results in Fig. 2. In this case, phase-locked in-
jection scheme could reliably place electron bunches near
the maximum acceleration gradient. It appears that the ex-
tent of this phase error is determined by how deeply the
oscillator phase is trapped in its effective potential, which
improves with greater drive strength, slower chirp rate, and
initial detuning further above resonance.

A consideration is how extending our one-dimensional
analysis to multiple dimensions might affect results. One
point that needs to be specifically addressed is the addi-
tional Gouy phase shift φg incurred by a Gaussian mode
of finite Rayleigh range zR. Because this phase shift is a
function of z, tan φg = z/zR for the lowest order, vacuum
Gaussian mode, one may worry that this phase shift will
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Figure 2: Evolving phase difference and Ez for the CO2

laser parameters of Fig. 1. For t between 60 and 100 ps
there is a constant phase difference between the lasers and
accelerating field, permitting control of electron injection.

destroy the ξ-only dependence essential for autoresonance,
possibly destroying phase locking near the laser focus. For-
tunately, in the case of two lasers we will find that the re-
spective Guoy phases cancel out of the ponderomotive beat
∼ a1a

∗
2. Thus, if the two lasers have similar focal proper-

ties, we expect autoresonance to drive the plasma wave to
high amplitudes.

CONCLUSIONS

We have introduced a straightforward, seemingly mi-
nor, modification of the DMG scheme for the chirped-
pulse PBWA, based on the nonlinear phenomenon of au-
toresonance, which nevertheless enjoys certain advantages
over previous approaches. By beginning the excitation
above resonance and sweeping the beat frequency down-
ward sufficiently slowly, the plasma wave frequency au-
tomatically self-locks to the drive frequency, so that the
plasma wave amplitude adjusts itself consistent with this
nonlinear frequency. This autoresonant excitation achieves
higher plasma wave amplitudes, is much more robust to in-
evitable variations in plasma and laser parameters, and ap-
pears to provide an avenue toward timed bunch injection.
The most obvious drawback to the APTR scheme, in com-
parison to the standard approach, is the added complication
of a chirped drive. But the total chirp required is modest, on
the order of only ωp, typically corresponding to only a few
percent of the laser carrier frequency. These results warrant
extending investigations to higher-dimensional geometries,
including self-consistent laser evolution, and using fluid
and particle-in-cell codes.
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