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Abstract 
Due to higher accelerating gradient in the super-

conducting linear accelerator the RF defocusing factor 
plays significant role in the beam dynamics. Together 
with the space charge it is a main reason for the stability 
loss. Usually the RF defocusing is estimated in frame of 
the travelling wave formalism with synchronous motion. 
However, the super-conducting cavity is desirable to have 
the constant geometry, when synchronous motion is 
absent. In this case the quasi-synchronous phase velocity 
is adjusted by RF phasing. In this paper we investigate RF 
defocusing factor in absent of synchronism between the 
beam and the accelerating structure.  

INTRODUCTION 
 In order to simplify the construction of SC cavity and 
increase the accelerating gradient the focusing system is 
desirable to place outside cavity using the external 
quadrupoles. However, together with the higher 
accelerating rate in the super-conducting linear 
accelerator we get much higher defocusing factor in 
comparison with the normal conducting linear accelerator. 
Since it affects on the total transverse frequency similarly 
the space charge tune shift, the total current and the 
maximum possible cavity length (focusing period) are 
strongly determined by this effect. The RF defocusing is 
the derived effect from accelerating field alteration, and 
usually it is estimated in frame of the traveling wave 
formalism, when we take into consideration only one 
synchronous harmonics. It means in case of perfect 
synchronism the synchronous particle sees the constant 
transverse force.  
In the super-conducting linear accelerator many cavities 
owing to one family have an identical geometry, and the 
phase velocity changes step by step from family to 
family. Number of gaps in cavity and number of cavities 
in one family can be varied from one to few tens and it 
depends on many factors. The particles are sliding down 
or up relatively of RF wave in dependence on ratio 
between the particles and the wave velocities. Thus, the 
particles are never in synchronism with the equivalent 
traveling wave. The proper law of RF phasing of cavities 
provides the longitudinal stability in SC linear accelerator 
[1]. But simultaneously with that we can expect the RF 
defocusing factor will be modified.  

RF DEFOCUSING IN SINGLE CAVITY 
WITH CONSTANT GEOMETRY 

First of all we consider the RF defocusing factor as the 
single integrated kick in one cavity with the axial 

symmetrical field and with the celln  absolutely identical 
accelerating cells, having the same sizes with periodicity 

2
λβ str

cellL = . The structure velocity strβ , some analogue 

of the phase velocity, is therefore constant in the cavity. 
The transverse motion equations are: 
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where yxE ,  is the transverse component of the RF field. 
On the cavity axis the radial RF field can be represented 
as: 
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In the case of the field with the axial symmetry we have: 
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Substituting the latter in the Maxwell equation 
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between the transverse and the longitudinal components: 
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For instance, in the H resonator with the angular 

frequency 
λ
πω c 2=  the accelerating field can be 

represented by the Fourier series:  
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Then the motion equations (1) can be rewritten in the 
longitudinal coordinates system dtcdz β= :  
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where 
λβ

π
str

n
nk  2=  is the wave number of n-th field 

harmonic. 
Retaining in (4) the nearest harmonics to the quasi-
synchronous particle zkE 11 cos  with the wave number ____________________________________________ 
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λβ
π

str

k 2
1 = , we can use the traveling wave system. In this 

system, the phase of the arbitrary particle relative to the 
RF field is determined in accordance with the common 
definition: 
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where 0ϕ is the initial phase. In order to provide the 
quasi-synchronism in the longitudinal plane the particle 
RF phase at the entrance and exit of the cavity has to be in 
the relation determined in [1]:  
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due to the non-synchronism, qsϕ  is the average meaning 
of quasi-synchronous phase. 
Now we can calculate the trajectory-refracting angle of 
the quasi-synchronous particle due to the RF defocusing 
effect over the whole cavity with the length of 
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In order to have stable longitudinal motion the average 
quasi-synchronous phase has to be negative, that is to say 
the RF accelerating field always defocuses the particle. 

Let us call 
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can see that due to the non-synchronism the RF 
defocusing factor decreases proportionally to the time 
sliding factor.   

RF DEFOCUSING IN SEQUENCE OF 
CONSTANT GEOMETRY CAVITIES 

The expression (8) allows the RF defocusing integrating 
kick to be estimated when the particle is flying through 
the single cavity. In reality, the kick is modulated with the 
frequency of the cavities' repetition. Now we shall 
consider the case when the cavities are joined up in 
families, and all the m cavities of one family have the 
same structure phase velocity miconststr ÷∈= 1for   β . 
Because of non-synchronism the particle always slides in 
the cavity relative to the RF field and it is returned to the 
required RF phase at the entrance of next cavity by the RF 
phase shift. The RF phase shift law in each 
cavity ∑∆=

i
RFstr ii ϕϕ )(  determines the quasi-synchronous 

particle motion. Due to a proper choice of the RF phase 

shift ∆ϕRF between cavities we can create a quasi-
synchronous motion and, in total, stable motion in the 
whole accelerator [1]. The quasi-synchronous particle 
oscillating instantaneously in the single resonator around 

0=ϕ  (for “sin” wave) is forced by the intersection RF 
shift to oscillate on average around qsϕ . Figure 1 shows 
how the quasi-synchronous particle oscillates around the 
average value qsϕ  in the linear accelerator with one 
family. For each section the initial and final phase 
deviations are not equal to each other.  

Instead (6) the corrected phase of the quasi-
synchronous particle is 
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system of quasi-synchronous motion in the normalized 
coordinate system λβτ strz /=  takes the form: 
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The last two equations of the longitudinal motion are 
solved in [1] together with the determination of the 
optimum law for the RF phase shift. 
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Figure 1: Longitudinal motion in the stepped RF phase 
structure with one family 

 
In particular, the instantaneous quasi-synchronous phase 
is: 

( )τϕτϕ fqsqs +=)(      
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where cavcav T/1=ν  is the frequency of  the RF phase shift 
and Ω  is the longitudinal frequency in the sinus wave 
separatrix with sϕ =0. The period 2/cellcav nT =  measured 
in the number of λβ str  has to coincide with the cavity 
length 2/λβ strcellcav nL = .  

For the practical case we can take qscav ϕν 2/1cosΩ>> , 
and the first harmonic retains only 

( )τπντϕτ cavaf 2sin)()( ⋅=  with the slowly time 

dependent amplitude ( )
τ

ϕ
ν
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d
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cav
a ⋅= 2 . Thus, the quasi-

synchronous particle oscillates around the average value 
with the amplitude dependent on the non-synchronism 
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amplitude ( )τϕ a  decreases.  

 
 

Figure 2: Quasi-synchronous particle oscillation 

qsqsf ϕτϕτ −= )()(  relative to the average value in the 
linear accelerator with 10 families 

 
Figure 2 shows the quasi-synchronous phase oscillation 
versus the relative velocity in the case of 10 families with 
6 cavities in each family. Substituting ( )τϕτϕ fqsqs +=)(  
in the transverse motion equation (9) and inserting the 

new coordinate 
cavT
τξ = normalized to the cavity 

periodicity 
2
cell

cav

nT = , we have, for instance, in the 

horizontal plane:  
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βλ  is the amplitude of the RF 

defocusing factor. 
Comparing the superconducting linear accelerator with 
the fully synchronized normal conducting option, we can 
see that the sinus argument has the oscillating term. Thus, 
we get the alternating phase focusing component in the 
RF defocusing term. Let us open the sinus with the sinus 
argument, using the Bessel functions and retaining no 
terms higher than the first-order term: 
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The Bogolyubov-Metropolsky averaging method [2] 
allows us to find a common case for equation  
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 with the phase advance per one focusing period: 
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For equation (12) we have: 
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As usual, since 0sin <qsϕ , the second term defocuses, 
but it creates the focusing term as well, which is 
proportional to )(1 aJ ϕ . Additionally, due to sliding and 
phase oscillating, the RF defocusing is smaller by factor 

)(0 aJ ϕ . From (16) it follows that the sliding factor can 
provide the beam focusing without quadrupoles, when 

02 >µ , that is:  

)(8
)(cos

sin
0

2

2
1

22

a

aqscellRF
qs J

JnA
ϕπ

ϕϕ
ϕ <    (17) 

We can conclude that the sliding factor positively affects 
the transverse beam stability without any significant loss 
in accelerating rate. 
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