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Abstract

Due to higher accelerating gradient in the super-
conducting linear accelerator the RF defocusing factor
plays significant role in the beam dynamics. Together
with the space charge it is a main reason for the stability
loss. Usually the RF defocusing is estimated in frame of
the travelling wave formalism with synchronous motion.
However, the super-conducting cavity is desirable to have
the constant geometry, when synchronous motion is
absent. In this case the quasi-synchronous phase velocity
is adjusted by RF phasing. In this paper we investigate RF
defocusing factor in absent of synchronism between the
beam and the accelerating structure.

INTRODUCTION

In order to simplify the construction of SC cavity and
increase the accelerating gradient the focusing system is
desirable to place outside cavity using the external
quadrupoles. However, together with the higher
accelerating rate in the super-conducting linear
accelerator we get much higher defocusing factor in
comparison with the normal conducting linear accelerator.
Since it affects on the total transverse frequency similarly
the space charge tune shift, the total current and the
maximum possible cavity length (focusing period) are
strongly determined by this effect. The RF defocusing is
the derived effect from accelerating field alteration, and
usually it is estimated in frame of the traveling wave
formalism, when we take into consideration only one
synchronous harmonics. It means in case of perfect
synchronism the synchronous particle sees the constant
transverse force.

In the super-conducting linear accelerator many cavities
owing to one family have an identical geometry, and the
phase velocity changes step by step from family to
family. Number of gaps in cavity and number of cavities
in one family can be varied from one to few tens and it
depends on many factors. The particles are sliding down
or up relatively of RF wave in dependence on ratio
between the particles and the wave velocities. Thus, the
particles are never in synchronism with the equivalent
traveling wave. The proper law of RF phasing of cavities
provides the longitudinal stability in SC linear accelerator
[1]. But simultaneously with that we can expect the RF
defocusing factor will be modified.

RF DEFOCUSING IN SINGLE CAVITY
WITH CONSTANT GEOMETRY
First of all we consider the RF defocusing factor as the
single integrated kick in one cavity with the axial
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symmetrical field and with the n_, absolutely identical

cell
accelerating cells, having the same sizes with periodicity

L — ﬂxtr 2’
2

. The structure velocity f,,., some analogue

cell — str >

of the phase velocity, is therefore constant in the cavity.
The transverse motion equations are:

d*x e
2 T E,
dt myy
7 : M
e
r=——E,
dt myy

where £, is the transverse component of the RF field.

On the cavity axis the radial RF field can be represented
as:
E
E (x)= Ex(0)+aa—x~x
X
, (@)

JE,
E,(»)= E,,(0)+a—y’~y

In the case of the field with the axial symmetry we have:

JE. OE
= and E(0)=E,(0)=0.

ox )y
Substituting the latter in the Maxwell equation
E O0E, OFE . .
9E, +—+ 9, =0, we can easily get the ratio

ox dy oz

between the transverse and the longitudinal components:
9E, __aEy __19E 3)
ox dy 2 0z

For instance, in the H resonator with the angular

2 .
frequency a)=% the accelerating field can be
represented by the Fourier series:

E.(z.t)= S E, sin2""

str

z-sin(ax + @,) 4)

Then the motion equations (1) can be rewritten in the
longitudinal coordinates system dz = ¢/t :

d*x e .
—=—————-%k E cosk z-sin(at+ X
de 2m0C273ﬂ2 % n~n n ( ¢0) (5)
d*y e . '
=———— >k E cosk, z-sin(ax + .
) 2m062}/3ﬂ2 %: nln n ( ®0)y
2rn .
where &, = is the wave number of n-th field
str
harmonic.

Retaining in (4) the nearest harmonics to the quasi-
synchronous particle E,cosk,z with the wave number
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_ 2z

bBLA
system, the phase of the arbitrary particle relative to the
RF field is determined in accordance with the common
definition:

, we can use the traveling wave system. In this

2mzdé 2z dé
=+, —kz=—|—"4+¢p,——|—, (6)
4 Do~ Y Py YR
where ¢, is the initial phase. In order to provide the
quasi-synchronism in the longitudinal plane the particle
RF phase at the entrance and exit of the cavity has to be in
the relation determined in [1]:

¢Lcav = aqs +0.5- Awsl[de
¢0 = aqs -05- A(”sh’de

where A¢slide = Imce[/ ( ﬂg’

, (M

- IJ is the phase sliding factor

due to the non-synchronism, @, is the average meaning

of quasi-synchronous phase.
Now we can calculate the trajectory-refracting angle of
the quasi-synchronous particle due to the RF defocusing
effect over the whole cavity with the length of
L B
cav 2
dx . AQ,
o @ | emh Esing, V) nuBuA (*) g
dy dm,c*y’ B AD 2 v
dz 2
In order to have stable longitudinal motion the average
quasi-synchronous phase has to be negative, that is to say
the RF accelerating field always defocuses the particle.
Sin A¢sl{de
2
Psiide
2
can see that due to the non-synchronism the RF
defocusing factor decreases proportionally to the time
sliding factor.

e

Letuscall T, = the time sliding factor. We

RF DEFOCUSING IN SEQUENCE OF
CONSTANT GEOMETRY CAVITIES

The expression (8) allows the RF defocusing integrating
kick to be estimated when the particle is flying through
the single cavity. In reality, the kick is modulated with the
frequency of the cavities' repetition. Now we shall
consider the case when the cavities are joined up in
families, and all the m cavities of one family have the
same structure phase velocity S, = const forie 1+m.

Because of non-synchronism the particle always slides in
the cavity relative to the RF field and it is returned to the
required RF phase at the entrance of next cavity by the RF
phase shift. The RF phase shift law in each
cavity ¢, (i) = X A@,,, determines the quasi-synchronous

particle motion. Due to a proper choice of the RF phase
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shift A@grr between cavities we can create a quasi-
synchronous motion and, in total, stable motion in the
whole accelerator [1]. The quasi-synchronous particle
oscillating instantaneously in the single resonator around
¢ =0 (for “sin” wave) is forced by the intersection RF

shift to oscillate on average around @ . Figure 1 shows

how the quasi-synchronous particle oscillates around the
average value @ in the linear accelerator with one
family. For each section the initial and final phase

deviations are not equal to each other.
Instead (6) the corrected phase of the quasi-

synchronous particle is
0, (2)= 277[[];—5 - jﬁj +¢,,(z) and the full equation

system of quasi-synchronous motion in the normalized
coordinate system 7 =z/ /3, A takes the form:

d*x el B2 .
=k E,sing, - x

dr Amyc y ﬁqs

dZy eﬂZﬂZ

= Pw _ pEsing -
dr’ 4mocz}/3ﬁi 151 1Py, Y

J J ©)
¢‘F — 2 T & _ 1 + ¢5!r
dr B, dr

dﬁ as ek 1 ﬂ‘ﬂ str

= cos
dr Zm()cz}/}ﬁqs s

The last two equations of the longitudinal motion are

solved in [1] together with the determination of the

optimum law for the RF phase shift.

Particle trajectories %Zdw/w e
icle trajectori
in III region Pos

Level of structural
phase velocity

‘s" ¢ (rad)

5.00 10.00

RF shift between
neighboring cavities

Particle trajectorie:
in I region

Figure 1: Longitudinal motion in the stepped RF phase
structure with one family

In particular, the instantaneous quasi-synchronous phase
is:

0. (D=9, +f(7)
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do. [y -sinQrlv T
f(T)=—2 D -y uzu _( Zm; )
dr = Q'cosp, —1I'v

cav

with ., (10)

where v, =1/T,

cav

is the frequency of the RF phase shift
and Q is the longitudinal frequency in the sinus wave
separatrix with @ _=0. The period T, =n_, /2 measured
in the number of S, A has to coincide with the cavity
length L, =n_,B A/2.

For the practical case we can take v, >> Qcos”z(p_qs,
and the first
f()=9,(r)-sin(2zv,_ 1)

retains
slowly

harmonic
with  the

idL . Thus, the quasi-

1% dr

cav

only
time

dependent amplitude ¢, (7)=

synchronous particle oscillates around the average value
with the amplitude dependent on the non-synchronism

%zyr 1—& . For the higher relative velocity
dr B(r)

and the same number of cavities in one family the
amplitude @, (z) decreases.
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Figure 2: Quasi-synchronous particle oscillation
f(®)=¢, (r)-¢@, relative to the average value in the

linear accelerator with 10 families

Figure 2 shows the quasi-synchronous phase oscillation
versus the relative velocity in the case of 10 families with

6 cavities in each family. Substituting ¢, (7) = (P_q; + f (T)
in the transverse motion equation (9) and inserting the

. T .
new coordinate & =—— normalized to the

cav

cavity

cell

periodicity T, = n2

, we have, for instance, in the

horizontal plane:
d’x
dé&?

2
+ ARleu Sin(@s +¢@, sin Zﬂf)- x=0, (11)

el B . .

————kE, is the amplitude of the RF
4m,cy° B,
defocusing factor.
Comparing the superconducting linear accelerator with
the fully synchronized normal conducting option, we can
see that the sinus argument has the oscillating term. Thus,
we get the alternating phase focusing component in the
RF defocusing term. Let us open the sinus with the sinus
argument, using the Bessel functions and retaining no
terms higher than the first-order term:

d*x n, ?
?-’-ARF(T”] : (12)

{sin(ﬁqs [7,(p,)+..]-cos@,, -[27,(p,)sin 2ﬂ§+...]}- x=0

where 4,, =

The Bogolyubov-Metropolsky averaging method [2]

allows us to find a common case for equation

d*x

2

+(a+2-Yq, cos2mkE) - x =0 (13)
k

the solution:
x(&) =A~(1+Z qzk > coleu’cfjcos,uég (14)
k 27mk

with the phase advance per one focusing period:

2 1 ‘]1?
= =+ 15
Hoy 2ﬂ2%:k2 ¢ ()
For equation (12) we have:
1 ’ i
n _
/uiy ~ F[ARF(%J cos@,, -J, (%)J +
(16)

2
n P
+ ARF( 626” j sin ¢q5J0 (wa )

As usual, since sin(/_qu <0, the second term defocuses,
but it creates the focusing term as well, which is
proportional to J,(¢,) . Additionally, due to sliding and
phase oscillating, the RF defocusing is smaller by factor
Jo(9,) . From (16) it follows that the sliding factor can
provide the beam focusing without quadrupoles, when
1> >0, that is:

< Apei C;)SZ @:le (9.) 17

87°J,(9,)

We can conclude that the sliding factor positively affects
the transverse beam stability without any significant loss
in accelerating rate.

|sin O,
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