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Abstract

In this contribution two recently proposed numerical
schemes with no dispersion along the beam axis for the
simulation of ultra-short, relativistic bunches are investi-
gated. This property is of particular interest in the com-
putation of electromagnetic wakes in linear accelerators.
The numerical results obtained by both schemes are bench-
marked against the analytical solution for an electron bunch
moving within a cylindrical pipe with perfectly conduct-
ing walls. As a more realistic application, the longitudinal
wake potential of a single bunch passing through several
cells of the TESLA-FEL.

INTRODUCTION

Linear accelerators used as FEL injectors constitute the
cutting edge of modern electron accelerator technology.
Currents above 10kA in ultra-relativistic, extremely short
electron bunches of length below 100µm can already be
achieved, e.g., at the TESLA-FEL facility at DESY, Ham-
burg (cf. [5]). The short range wake fields produced by
these bunches extend far into the THz range, i.e., they
may initiate Cooper pair breakup in superconducting RF-
cavities. Also the increase of single bunch energy spread
and beam emittance due to the bunch wakes remains an is-
sue, even in the ultra-relativistic regime.

In order to reveal the inner structure of field-particle in-
teractions, numerical simulation codes are used as a stan-
dard tool in accelerator physics. In the simulation of ultra-
short relativistic bunches, however, special care must be
taken regarding the specific capabilities and the accuracy of
the numerical method employed. The most severe problem
arising in such simulations is the large numerical disper-
sion error in the electromagnetic field computation. The
sources of dispersion errors in simulation codes based on
discrete models are twofold. First, the resolution of the ex-
tremely short wave lengths in the vicinity of the bunch re-
quires a large computational effort, which often exceeds the
resources provided by today’s computers. Second, most of
the standard techniques for the solution of Maxwell equa-
tions exhibit an inherent numerical dispersion for high fre-
quency waves propagating in certain directions in space.
In particular, it has been shown that, for Cartesian grid-
discretization, the dispersion error of the Yee-method at-
tains its maximum in directions parallel to the coordinate
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axes. In the simulation of short relativistic bunches, this
kind of error becomes unacceptably large, since longitudi-
nal waves are additionally shifted by Lorentz contraction
toward higher frequencies. The dispersion free computa-
tion of longitudinal wakes along the beam line remains,
therefore, a major computational challenge.

In this paper we investigate two recently proposed ap-
proaches which completely eliminate the longitudinal dis-
persion error in the electromagnetic field computation. In-
stead of modifying the stencil of the spatial discretization,
increasing the order of discretization accuracy or adapt-
ing the orientation of the computational mesh, the methods
used here, introduce a splitted time step scheme in the up-
date equations, which maintains the simple structure and
efficiency of the spatial discretization used with the Finite-
Integration-Theory (FIT)[1].

DESCRIPTION OF THE ALGORITHMS

The idea of using transversal-longitudinal splitting for
minimizing the longitudinal dispersion errors in combina-
tion with a moving mesh technique for wake field computa-
tions was pioneered by Novokhatski (see [3] and references
therein). The two schemes discussed below, however, re-
main completely in the framework of the FIT. Here, the
spatial discretization is defined by a primal-dual grid com-
plex, (G, G̃). On G, the electric field is represented by elec-
tric voltages, �e , and on G̃ the magnetic field is represented
by the magnetic voltages

�

h. The discrete counterparts of
the curl-operator on G and G̃ are given by the topologi-
cal operators C and C̃, respectively. Additionally, discrete
material operators, Mε and Mµ, are defined, accounting for
the electrical and magnetical properties of materials in the
computational domain. For further details, especially for
the matrix notation applied in this work, the reader is re-
ferred to [1].

To begin with, the second order accurate, explicit
Longitudinal-Transversal-Leap-Frog (LTLF) scheme is
discussed. Denoting by ∆t the time step, t(n) = ∆t n the
n-th time level, the time update scheme takes the form:
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The update matrix, AS, is written as a product,

AS(∆t) = AT

(
∆t

2

)

AL(∆t)AT

(
∆t

2

)

, (1)
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where the operators AL and AT, represent the update of
a subsystem in transversal and longitudinal direction, re-
spectively. This type of directional separation of the update
matrix AS is equivalent to a second order accurate Strang-
type operator splitting. Each of the directional operators,
AL and AT, is numerically equivalent to a second order
accurate two-step Leap-Frog update

AL/T(∆t) = UL/T

(
∆t

2

)

VL/T(∆t)UL/T

(
∆t

2

)

,

UL/T(∆t) =
(

1 −∆tM−1
µ CL/T

0 1

)

,

VL/T(∆t) =
(

1 0
∆tM−1

ε C̃L/T 1

)

.

Omitting the details of a lengthy calculation, the numer-
ical dispersion relation of the LTLF scheme, for a ho-
mogenous mesh with mesh spacing ∆ and Courant number
σ = c0∆t/∆, is found to

A = σ2

(
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From (2) it follows that, for waves propagating in the lon-
gitudinal direction (kx = ky = 0) and for σ = 1, the exact
dispersion relation is recovered. Thus, for those waves no
numerical dispersion is produced by the scheme. The dis-
persion behavior of the scheme for waves propagating in
directions other than the longitudinal is shown in Fig. 1.
For an extensive description of the second scheme use in
this work, the TE/TM algorithm, the reader is referred to
[2]. Here, we only note that TE/TM is based on an eco-
nomic implicit formulation as opposed to the explicit up-
date in (1). For a time step equal to the longitudinal mesh
step (σ = 1), both algorithms, TE/TM and LTLF, allow
the application of a moving mesh in longitudinal direction
without any need of grid-to-grid interpolation of the field
quantities. In both cases, the moving mesh procedure re-
lies on the fact that, for this special choice of the time step,
the numerical and physical domain of dependence for lon-
gitudinal propagating waves coincide. The possibility of
employing moving meshes, makes both algorithms partic-
ularly attractive in the computation of short range wake po-
tentials in LINAC structures (cf. [4]).

NUMERICAL RESULTS

In order to demonstrate the accuracy of the two schemes,
the electromagnetic field of a line charge of length ∆, flying
with the speed of light along the axis of a cylindrical pipe
of radius 4 cm is numerically computed. An excitation of
this form is the discrete representation of the motion of an
ultra-relativistic point charge. It excites all wavelengths in
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Figure 1: Phase velocity at stability limit in the x-z-plane
for LTLF and Yee, respectively.

the discrete system, thus, any numerical dispersion error
in the longitudinal direction would become visible in the
simulation as spurious oscillation in the field solution. The
analytical solution is given by,

�E =
q

2πε0r
Π (z − c0t) êr,

where the line charge distribution is,

Π (z) =

{

1/∆ for |z| ≤ ∆/2,

0 otherwise.

Figures 2-4 show the results of the numerical simulation.
All shown field components are normalized to the radial
electric field of the analytical solution at a distance 2cm
away from the beam axes and the z-coordinate is given rel-
ative to the moving mesh. The radial components of the
electric field after the particle has traveled the distance of
1m in the pipe is shown in Fig. 2. The absence of any
numerical dispersion in the longitudinal direction is seen
by the concentration of the electric field on a single grid
point in the longitudinal direction. This behavior of the
numerical solution accurately approaches that of the delta-
distribution in the continuous case. In Fig. 3, the radial
electric field component in transversal direction is shown.
Both schemes show an excellent agreement with the analyt-
ical solution. With the computation of longitudinal wakes
in mind, it is interesting to observe that the vanishing lon-
gitudinal component of the electric field very closely ap-
proximates by both numerical schemes (see Fig. 4).

WAKE FIELD COMPUTATIONS

A more demanding application of the code is the wake
field computation of an electron bunch in an accelerating
structure consisting of 20 TESLA-cells (cf. [5]). Contrary
to the test problem of the previous section, a particle mov-
ing with the speed of light within such a structure does pro-
duce a nonvanishing longitudinal wake field. The reader
is referred to [2] for further details of the numerical setup
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Figure 2: The radial component of the electric field after
1m distance is plotted vs. longitudinal position. The nu-
merical solutions of the LTLF and TE/TM are concentrated
on a single grid point (the position of the point charge).
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Figure 3: The radial component of the electric field vs. the
x-coordinate compared to the analytical solution is shown.

and application of the TE/TM scheme for this structure.
Fig. 5 shows the longitudinal wake potential, computed for
a Gaussian bunch of rms-width 1mm using a mesh step of
0.4mm in the longitudinal direction. Additionally, the wake
potential obtained with the standard Yee scheme is given.
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Figure 4: Normalized error of the longitudinal electric field
component on the axis vs. longitudinal distance for the
LTLF and TE/TM methods.
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Figure 5: Wake potential calculated by the TE/TM, LTLF
and the 2D Yee (4 times finer mesh) method for the 20
TESLA-cells structure.

Obviously, TE/TM and LTLF provide by far the most ac-
curate results. In particular, the oscillations in the wake
potential caused by the longitudinal dispersion error com-
pletely disappear for those schemes. The small difference
observed between the TE/TM and LTLF curves is proba-
bly due to the more accurate Uniformly-Stable-Conformal
(USC) spatial discretization of the boundaries used in the
TE/TM scheme (see [2]).

CONCLUSIONS

Two numerical algorithms for the solution of Maxwell’s
Equations have been investigated for their application in
accelerator physics. For the analytic test problem both al-
gorithms give very accurate results. A slight difference was
observed in the calculation of the longitudinal wake po-
tential for the TESLA RF-structure. Both schemes allow
for an accurate computation of the wake potentials in com-
plex geometry. A slightly higher accuracy is obtained with
the TE/TM scheme, probably due to the USC discretization
which is currently not available with LTLF.
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