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Abstract 
   For a slowly tapered vacuum chamber with confocal 
elliptical cross-section, results obtained with the ABCI 
and GdfidL electromagnetic simulators are compared with 
analytic estimates for the transverse impedance at zero 
frequency.  In the limits of round and flat chambers, we 
discuss the conditions for validity of the analytic 
approximations of Yokoya and Stupakov. 

 INTRODUCTION 
   An important issue in the design of modern synchrotron 
light sources is the determination of the transverse 
impedance of vacuum chambers for small-gap undulators 
which have tapers going from one cross-section to 
another in a given length.  In the case of interest, the 
tapering is sufficiently gradual to be effective, the 
chamber height changes by a substantial factor, and the 
horizontal-to-vertical aspect ratio is large. 
   Yokoya has derived the low frequency transverse 
impedance of an axially symmetric tapered transition [1], 
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where k is the wavenumber of the perturbing field, 0Z  the 

free space impedance, ( )zr  the radius of the tapered 

circular chamber, and prime denotes derivative with 
respect to z.  When the variation of the radius takes place 
over a distance l , Stupakov [2] has presented arguments 
indicating that Yokoya’s approximation should be valid 
when 

                               1/2 <<lkr .                                     (2) 
In addition, he used first-order perturbation theory to 
provide a new derivation of Yokoya’s result for 0=k , 
based on the solution of electrostatic and magnetostatic  
problems.  We have extended Stupakov’s calculation to 
higher-order [3] and have found that the Yokoya 
approximation Eq. (1) is the first term in an asymptotic 

expansion in the parameter 22 / lavr , where rav stands for 

the average value of r(z). The higher-order terms are 
found to reduce the impedance below the value found by 
Yokoya.  This has also been observed in numerical 
calculations using ABCI [5] as illustrated in Fig. 1. 
      Using electrostatic and magnetostatic calculations, 
Stupakov [4] has also obtained a result within first-order 
perturbation theory for the impedance at k=0 of a flat 
rectangular chamber of constant half-width w  and 
varying half-height ( )zh , in the case when the width is 

large compared with the height.  His result is 
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Figure 1:  Impedance of a linearly tapered symmetric 
collimator for different ε=(rmax-rmin)/(rmax+rmin). Broken 
lines show Yokoya approximation Eq. (1).  

This expression has a form similar to Eq. (1) for a circular 
pipe, but is larger by a factor hw /~ π .  Applying an 

argument derived from considerations equating the phase 
velocity of the slowest eigenmode of the wave guide 
formed by the beam pipe to the phase velocity of the 
beam–induced image current [2], Stupakov suggests that 
Eq. (3) should be a good approximation for  

                                  1/'2 <<hhkw .                               (4) 
At 0=k , this condition does not provide a restriction on 
the width w, so the vertical impedance increases 
indefinitely as the chamber widens. However, we found 
[3] that Eq. (3) is the first term in an expansion in the 

parameter 2/ lwhav , where hav is the average chamber 

height. For large w  higher-order terms reduce ( )Im 0flat
yZ  

below the value given in Eq. (3) and the growth saturates. 
   In order to investigate this further we chose to analyze 
the problem of an elliptical chamber with varying 
ellipticity. This allowed us to smoothly extrapolate 
between the cases of circular and flat chambers. 

 ELLIPTICAL CHAMBER 
   Stupakov’s [2] method involves solving inhomogeneous  
two-dimensional Poison equations.  Matching boundary 
conditions for a translation invariant (uniform) elliptical 
cross-section is most easily done using elliptic cylindrical 
coordinates ( )z,,θµ .  The contour surfaces of constant µ  

are confocal elliptical cylinders, while those of constant 
θ are confocal hyperbolic cylinders.  The confocal 
cylinder ρµ =  forms the inner beam pipe boundary, 

while the z-axis is directed along the chamber axis.  The 
relationship between Cartesian and elliptic coordinates is 
___________________________________________  
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given by 
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where 2A is the distance between the foci.  The major and 
minor semi-axes of the elliptical cross-section are 

ρcoshAa =  and ρsinhAb = , and its eccentricity is 

given by 2 21 / 1/ coshe b a ρ= − = .  The limiting case of 

a circular cross-section of radius r is given by 
( )ρ−= exp2rA , with ∞→ρ .  The limit of 0→ρ , 

approximates a flat pipe ρAh 22 =  high by Aw 22 =  
wide.   
   In the case when the elliptical cross-section varies with 
z, it is generally not possible to introduce an orthogonal 
coordinate system that matches the cross-section at each 
value of z.  However, when the variation maintains a 
confocal structure, we can use the elliptic cylindrical 
coordinates introduced above, allowing ρ  to have a z-

dependence. The aspect ratio is given by 
( ) ( ) ( )zzazb ρtanh/ =   and the constant A  is determined 

by ( ) ( )222 zbzaA −= .  The requirement for confocal 

variation allows arbitrary variation in one plane, e.g. 
arbitrary beam pipe half-height ( )zb .  The variation in the 

other plane is then fixed as soon as a is specified at any 
single value of z. 
   Within first-order perturbation theory [3], we find the 
vertical impedance is given by 
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and 
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The expression for the horizontal impedance ( )0xZ is 

obtained by making the interchange sinhcosh ↔  in Eqs. 
(7) and (8).  

   For a weakly elliptical pipe ( )1>>ρ , each term in the 

sum in Eq. (6) is ( )ρ2−eO  smaller than its predecessor.  
Keeping only the lowest order correction, we get 
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The plus sign is for the vertical impedance and the minus 
sign for the horizontal.  For a circular pipe, 

( ) ( ) ( )zrzrz /'' =ρ , hence the dominant term is Eq. (1) 

originally found by Yokoya for a round  tapered pipe.   
   In the limit of a flat pipe ( )0→ρ , the sum in Eq. (6) 

can be replaced by an integral and to leading order 
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and 
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For an almost flat elliptical pipe, the width is 
approximately constant, and the half-height is ( )zAρ .  

Eq. (10) for the vertical impedance differs from the result 
of Stupakov Eq. (3) for a flat rectangular pipe by a factor 

of ( ) 12 −π .  Eq. (11) for the horizontal impedance is one-

half the Yokoya result of Eq. (1) for an axially symmetric 
tapered transition with matching vertical dimensions.   
    In the case of large ρ , corresponding to an almost 

round chamber, the first-order perturbation theory results 

are accurate for slowly tapered structures with 22 / lavr  

small.  For small ρ , corresponding to large horizontal to 

vertical aspect ratio, the first-order perturbation result is a 
good approximation [3] only when the expansion 

parameter 22 / lavA ρ 2/ lavwh≅ is small.  Otherwise, 

higher-order terms in the perturbation expansion cannot 
be neglected and first-order perturbation theory gives an 
over-estimate of the impedance.  The breakdown of first-
order perturbation theory is clearly demonstrated by Eq. 
(11). It predicts a substantial value for the horizontal 
impedance, but it is intuitively obvious that beam in a flat 
chamber should not experience any horizontal force. 

 GDFIDL CALCULATIONS 

 
Figure 2:  Geometry with principal dimensions in cm. 

   We now discuss calculations performed using code 
GdfidL [6] for the geometry of  Fig. 2, consisting of a 
uniform pipe with elliptical cross-section linearly tapered 
to another uniform elliptical pipe with a smaller cross-
section confocal to the first pipe; the structure is then 
continued mirror symmetrically with respect to the middle 
of the center pipe. Strictly speaking the linear tapering we 

use violates the confocal condition constba =− 22 at 
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intermediate cross-sections, however, for gradual 
transitions of interest the deviation is found to be quite 
small.  
   The vertical and axial dimensions are fixed for all 
calculations described below. Both the outer and the inner  
pipes are then varied from round to approximately flat 
maintaining the confocal condition. In each case, we 
separately calculate the horizontal and vertical wake-
potentials by displacing the drive bunch in the appropriate 
plane. GdfidL calculates the EM fields and integrates 
them along the trajectory of the drive bunch. We take 
advantage of the symmetry planes and perform the 
calculations for a quarter structure, x>0, y>0, enforcing 
electric boundary condition in the y=0 (x=0) plane and 
magnetic boundary condition in x=0 (y=0) plane when 
calculating vertical (horizontal) wake-potentials.  
 

 
Figure 3:  GdfidL wake-potentials. 

 
   A sample of GdfidL results is shown in Fig 3. The 
wake-potential due to a Gaussian bunch has a part that is 
approximately Gaussian, corresponding to the Yokoya 
contribution, and there is some additional ringing at the 
tail. As we go from round to a more flat geometry, there 
is an increase (decrease) in the vertical (horizontal) wake 
potential and an increase in the ringing. Note that we 
characterize the degree of flatness for a given structure in 
terms of the eccentricity emax of the ellipse that makes the 
middle pipe cross-section. 
   The zero-frequency transverse (m=1) impedance is 
related to the wake-potential of a finite length bunch of 

charge q offset by ∆ via ( )
,, ,0 ( )

x yx y x y
i
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In order to carefully account for the contribution of the 
ringing part, one must calculate the wake-potentials up to 
large distances behind the bunch. This is difficult and 
complicated by the fact that (at least for certain 
combinations of bunch lengths and mesh sizes) we have 
observed some systematic errors in the long-range wake-
potentials, e.g. a non-vanishing DC value.  Since narrow 
band resonances are not the focus of this paper, we have 
chosen to approximately calculate the zero frequency 

impedance from the front part of the wake-potential by 
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∆= ∫ , where z@Wmax  stands 

for the location of the maximum (absolute) value of the 
wake-potential. 
 

 
Figure 4: Transverse impedances from GdfidL 
calculations (symbols) and from Eqs. 6-8 (solid) as a 
function of ellipse eccentricity in the middle pipe. 

   
   Transverse impedances found in this manner are shown 
in Fig. 4. The impedance is normalized by its (GdfidL) 
value for axially symmetric pipe with the same vertical 
dimensions.  For the 0.4 mm step size used the GdfidL 
value for the round pipe (~1.8 kΩ/m) is quite close to 1.7 
kΩ/m that follows from Eq. (1).  For small eccentricity 
the horizontal and vertical impedances follow Eq. (9). For 
larger e the vertical impedance plateaus at approximately 
twice the “round pipe” value of Eq. (1), and the horizontal 
impedance at less than 20% of this value. Hence, for large 
aspect ratios the impedance deviates from the asymptotic 
behaviour predicted by the first-order perturbation theory 
results of Eqs. (10-11), saturating at much smaller values. 
   While there is still some uncertainty in our present 
GdfidL calculations, and we are in the process of refining 
them, we believe the present results convincingly 
illustrate the breakdown of the first-order perturbation 
theory when the eccentricity is large. Finally, we note that 
similar observations of saturating vertical impedance and 
small horizontal impedance for large aspect ratio tapered 
beam pipe (although not in confocal elliptical geometry) 
have been reported by others [7-8]. 
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