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Abstract
A barrier bucket with very short or zero rf-barrier

separation (relative to the barrier widths) has its syn-
chrotron tune decreasing from a very large value towards
the bucket boundary. As a result, chaotic region may form
near the bucket center and extends outward under increas-
ing modulation of rf voltage and/or rf phase. Application
is made to those barrier buckets used in momentummining
at the Fermilab Recycler Ring.

UNPERTURBED BARRIER SYSTEM

During momentum mining at the Fermilab Recycler
Ring, a barrier bucket with zero barrier separation is
opened to store the unmined particles. At the barrier
width T1 = 1.27 µs and height V0 = 2 kV, the maximum
half bucket height is ∆Epk =

√
2β2eV0T1E0/(|η|T0)

=21.77MeV, with nominal beam energyE0 =8.938GeV,
nominal velocity v= βc, c being velocity of light, revolu-
tion period T0 = 11.13 µs, and slip factor η=−0.008812.
The synchrotron frequency is infinite at the center of
the bucket, and decreases hyperbolically with the maxi-
mum energy offset ∆̂E to the minimum value νs min =
1
4eV0/∆Epk =2.297× 10−5 (Eq. 1) at the edge. Because
of the rather slowly decreasing synchrotron tune towards
the bucket edge, fixed points of parametric resonances
exhibit themselves rather far away from the edge in the
presence of voltage and/or rf phase modulation. The impli-
cation is that, unlike a sinusoidal rf bucket, chaotic regions,
if present, start from the bucket center and extend outward
when the modulation strength increases as illustrated in
Fig. 1. This paper serves as an extract of Ref [1].

Without voltage or phase modulation, the equations
of motion of a beam particle are

dτ

dθ
=

η∆E
ω0β2E0

,
d∆E
dθ

=
eV0T1

2π
∂f0
∂τ

=
eV0

2π
f1(τ, T1),

where∆E is the energy offset, τ is the arrival time lagging
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Figure 1: Left: Synchrotron tune and harmonics vs. barrier pene-
tration showing resonances extending from bucket center towards
edge. The reverse is true for the sinusoidal rf bucket on the right.
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Figure 2: Reduced rf potential f0(τ, T1) and rf voltage
f1(τ, T1) = T1∂f0(τ, T1)/∂τ .

behind some on-energy particle. The barrier voltage and
potential are V0f1 and V0T1f0 as illustrated in Fig 2. They
can be derived from the Hamiltonian

H0 =
η(∆E)2

2ω0β2E0
− eV0T1

2π
f0(τ, T1),

from which the maximum energy offset ∆̂E corresponding
to the maximum barrier penetrationW is obtained:

H0 = −|η|(∆̂E)2

2ω0β2E0
= −eV0W

2π
.

The action-angle variables (J, ψ) are, respectively,

J=
1
2π

∮
∆Edτ=−4W ∆̂E

3π
=−4W 3/2

3π

√
ω0β2E0eV0

π|η| ,

ψ=
∂F2

∂J
=
dW

dJ

∫ τ

0

∂∆E
∂W

dτ=− π

4
√
W

∫ τ

0

dτ

±√W − T1f0
,

where F2(J, τ) =
∫ τ

0
∆E dτ is the generating function.

The synchrotron tune can be derived easily:

νs(W ) =
∂H0

∂J
= νs min

∆Epk

∆̂E
= νs min

√
T1

W
. (1)

VOLTAGEMODULATION

Voltage modulation is introduced by the substitution
V0 −→ V0(1 + a cos νmθ), where νm is the modulation
tune and aV0 is the modulation voltage. The Hamiltonian
receives a perturbative term

∆H=−eV0T1

2π
f0(τ, T1) a cos νmθ=−aeV0W

3π
cos νmθ

+
∑

n=1,2,···

aeV0W

n2π3

[
cos(2nψ+νmθ) + cos(2nψ−νmθ)

]
,

where we have used the expansion

f0(τ, T1) =
2W
3T1

−
∑

n=1,2,···

4W
n2π2T1

cos 2nψ.

Picking out the 2n:1 resonance, the Hamiltonian in a frame
rotating with the perturbation becomes

H(J, ψ) = −p(−J)2/3

[
1− 2a

n2π2
cos 2nψ

]
− νm

2n
J,

p =
eV0

2π

(
3π
4

)2/3 (
T0|η|

2β2E0eV0

)1/3

.
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Figure 3: Poincare section showing rf voltage modulation with aV0 = 0.05V0 at modulation tune (left) νm = 2.3νs min with
excitation of 2:1 resonance, (middle) νm = 2.3νs min with no chaoticity. Right: Poincare section showing rf phase modulation with
aT1 = 0.02T1 at νm = 1.195νs min with 1:1 resonance excited.

When the modulation frequency is near an even harmonic
of the synchrotron frequency, the particle motion is per-
turbed severely with possible particle loss. Left plot of
Fig. 3 shows the simulation of 100 particles for 5 mil-
lion turns (55.7 s) with voltage modulated at a= 0.05 and
νm = 2.30νsmin. The 2:1 resonance is evident. Particles
just outside the inner separatrix, τ≈±071µs, can be driven
to the outer separatrix and get lost. At high modulation
tune νm, all 2n:1 resonances with n up to νm/(2νs min)
will be excited. The half width of an island chain is
δ(−J)2/3 = [16

√
a/(nπ)][2p/(3νm)]2 while the separa-

tion between two adjacent island chains is ∆(−J)2/3 =
(2n + 1)[ 2p

3νm
]2. Thus adjacent chains will overlap only

when |a| > π2

4 [1 + 1
2n ]2 which is too big to be possible.

Thus there will not be any chaotic region as is shown in
middle plot of Fig. 3 at νm =29.08νsmin and a=0.02.

To estimate the tolerance of the rf voltage modu-
lation, we calculate the maximum stable bunch area of
the rf system by tracking 5000 particles for more than
100 synchrotron oscillations (with reference to νs min).
The fractional stable area in units of the bucket area is
defined as the ratio of the number of survival particles
to the number of initial particles. The result is depicted
in Fig. 4. It appears that the bucket cannot be filled to
more than 95% without encountering beam loss, when the
modulation amplitude is larger than a ∼ 0.001.

RF PHASE MODULATION

Rf phase modulation is introduced by τ −→ τ +
aT1 cos νmθ. The perturbation term in the Hamiltonian
becomes

∆H = −
∑

m=1,3,···

aeV0T1

mπ2

[
sin(mψ+νmθ)+sin(mψ−νmθ)

]
,

where use has been made of the expansion

f1(τ, T1) =
∑

m=1,3,···

4
mπ

sinmψ.

Picking out onem:1 resonance, the Hamiltonian in a frame
rotating with the perturbation becomes

0 1 2 3 4 5 6 7 8 9 10
νm/νs min

 0.5

 0.6

 0.7

 0.8

 0.9

 1.0

S
ta

bl
e 

P
ha

se
 S

pa
ce

 A
re

a

Mod. amp. from top: 
a=0.0001, 0.001, 0.005, 0.01,

0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1

Figure 4: Fractional stable bunch area to bucket area as functions
of voltage modulation tune, for various modulation amplitudes.

H(J, ψ) = −p(−J)2/3 − νm

m
J − aeV0T1

mπ2
sinmψ.

The effect of rf phase modulation will be stronger than the
effect of voltage modulation, because of the m−1 depen-
dency of the resonance strengths. Simulation of the 1:1 res-
onance is shown in the right plot of Fig. 3 with phase mod-
ulation amplitude aT1 = 0.02T1 at the modulation tune of
νm = 1.195νsmin. Here, the half-width of the island chain
is δ(−J)2/3 =

√
am/π(4νm/νs min)[2p/(3νm)]2 while

the separation between 2 adjacent chains is ∆(−J)2/3 =
4(m + 1) [2p/(3νm)]2. Thus the condition of overlapping
island chains is

a >
π(m+ 1)2ν2

s min

mν2
m

,

which is also the condition of evolution into chaos. The 3
plots in Fig. 5 are for phasemodulation amplitude a = 0.02
at modulation tunes νm = 29.08, 58.13, and 87.24νs,min,
corresponding to 60, 120, and 180 Hz. Only one particle
has been used. We see that the chaotic region becomes
larger with higher modulation tunes, and the particle wan-
ders outside the bucket eventually in the last plot.

To estimate the tolerance of the rf phase modulation,
we calculate the maximum stable bunch area of the rf sys-
tem by tracking 1000 particles for about 1000 synchrotron

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 1590



Figure 5: Poincare sections showing the chaotic region produced by tracking 1 particle with phase modulation a = 0.02 at modulation
frequencies 60 Hz (left), 120 Hz (middle), and 180 Hz (right), corresponding to modulation tunes νm = 29.08, 58.13, and 87.24νs min.
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Figure 6: Fractional stable bunch area to bucket area as functions
of phase modulation tune for various modulation amplitudes.

oscillations (with reference to νs,min), about 8.1 min. The
results depicted in Fig. 6 show that the bucket cannot be
stable if it is more than 92% filled at a � 0.0001. We
find rf phase modulation more devastating than rf voltage
modulation.

SYNCHRO-BETATRON COUPLING

An extra dipole field with an extra bending angle∆θ
results in a closed-orbit lengthening of ∆C = D∆θ, D
being the dispersion. The beam particle will arrive at the
rf cavity with a phase error ∆T = ∆CT0/C in time.
When this extra dipole field comes from the vibration of
a quadrupole with a horizontal modulation tune νm, the rf
phase error accumulates for roughly half the modulation
period before de-accumulation takes place, and the accu-
mulation enhancement factor is (2πνm)−1. Thus the rf
phase error will oscillate at the modulation tune with the
amplitude

a =
∆T
T1

=
D∆θ

2πνmC

T0

T1
.

If we wish to fill the barrier bucket up to 92%, Fig. 6 indi-
cates that the rf phase error has to be less than a ∼ 0.0001
to avoid beam loss. This implies that the allowable or-
bit lengthening is ∆C = D∆θ = 2πνmaCT1/T0 =
54.7 µm, where we have used the Recycler circumference
C = 3319 m and set νm = νs,min.

A typical quadrupole set in the Recycle Ring consists
of two half-quadrupoles each of length ∆�/2 = 0.787 m
separated by 1 m with a field gradient K1 = B′

y/(Bρ) =
0.0886 m−2, where (Bρ) is the rigidity of the beam. The
half FODO cell is 17.28 m long. If the quadrupole set has
a horizontal offset∆x = 1 µm from the designed orbit, the
beam will see an extra dipole field∆By = K1∆x(Bρ), re-
ceive an extra bend of ∆θ = ∆By∆�/(Bρ) = K1∆x∆�,
and thus lengthen the closed orbit by ∆C = D∆θ =
3.07 µm, about 18.0 times less than the stability crite-
rion derived above, where maximum dispersion of D =
2.227 m has been used.

Consider a truck driven on the service road about
22 m above the Recycler Ring. The stability criterion will
be surpassed if horizontal vibrations are excited in 18 con-
secutive quadrupole sets with an amplitude of∆x = 1 µm.
The next possibility is the influence of the LCW water
cooling pumps of the Main Injector which shares the same
tunnel with the Recycler Ring. When all the 208 sets of
quadrupoles oscillate randomly at the natural frequency of
νmω0/(2π) = 9.6 Hz [4], the lengthening of the closed or-
bit will be enhanced by

√
206 = 14.4 times that from one

quadrupole. However, the stability criterion will also be
enhanced by νm/νs min = 4.7 times because of the higher
modulation frequency. As a result, an oscillation amplitude
of ∆x = 6 µm will surpass the stability criterion. Another
possibility is the 60 Hz electrical noise corresponding to the
modulation tune νm = 29.08νs,min. If all the quadrupole
sets are excited randomly, an amplitude of oscillation of
∆x = 36 µm is required to surpass the stability criterion.
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