
SYNERGIA: AN ADVANCED OBJECT-ORIENTED FRAMEWORK FOR
BEAM DYNAMICS SIMULATION

D. Dechow, P. Stoltz, Tech-X, Boulder, CO 80303, U.S.A
J. Amundson, P. Spentzouris, Fermilab, Batavia, IL 60439, U.S.A.

Abstract
Synergia is a 3-D, parallel, particle-in-cell beam

dynamics simulation toolkit. At the heart of the software
development effort is the integration of two extant object-
oriented accelerator modeling libraries—IMPACT written
in Fortran 90 and mxyzptlk written in C++--so that they
be steered by a third, more flexible human interface
framework, written in Python. Recent efforts are focused
on the refactoring of the IMPAT-Fortran 90 codes in order
to expose more loosely coupled interfaces to the Python
interface framework.

OVERVIEW
The Synergia beam simulation framework is comprised

of a wide variety of software libraries and toolkits. Like
any non-trivial software solution, there is a significant
ongoing software development effort associated with the
Synergia project. The overriding software engineering
goal is to take the existing software pieces and create a
more flexible and extensible whole. The resulting
software architecture then will be more amenable to
incorporating new functionality, in the form of new
physics modules, new methods for extracting meaningful
knowledge from simulations, and new components that
make developing simulations more intuitive and effective.
This paper describes the ongoing effort to create a more
flexible and extensible architecture.

Currently, the physics simulation routines reside in the
IMPACT [1] and mxyzptlk/beamline [2] libraries. The
IMPACT library provides a parallel implementation of
particle propagation, RF modeling, and parallel space-
charge calculations. The mxyzptlk/beamline libraries
provide support for a broad base of accelerator simulation
and modeling. In the Synergia framework, the
mxyzptlk/beamline libraries are used primarily to
generate transfer maps from MAD language descriptions.

Additional frameworks and toolkits are used for
visualization, parallelization, and data analysis. Some of
these toolkits (only those whose inclusion had an effect
on the overall direction of the Synergia framework) are
described in later sections. Figure 1 gives a graphical
representation of the major components that are present in
the architecture of the Synergia project.

Figure 1: Synergia components.

SYNERGIA SOFTWARE DEVELOPMENT
A major design decision which has had a downstream

effect on the entire architecture was the choice to make
Synergia a Python-steered framework. This decision to
drive the Synergia framework via Python was made in
order to provide a more humane user interface. Previous
versions of Synergia depended on a tedious, error-prone,
file-based solution in order to populate simulations with
parameters.

By making Python scripts and the Python interpreter
the primary mode of user interaction with Synergia, we
are able to envision a software system in which every
other component in the system disappears into a Pythonic
background.

An initial effort which took place last year was devoted
to placing the main loop of IMPACT under the control of
Python. This initial, exploratory development was only
possible because of the existence of the Forthon [3]
wrapper generator tool and its ability to work with
Fortran 90 modules. As a secondary benefit, the Synergia
project team members were able to gain valuable
knowledge concerning the internal structure of the
IMPACT library. The Synergia architecture that resulted
from this exercise can be seen in Figure 2.

This experience also demonstrated that simply
wrapping the main simulation loop of IMPACT was not
going to provide the type of flexibility that was deemed
necessary for adding new accelerator physics. To this end,

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

1925 0-7803-8859-3/05/$20.00 c©2005 IEEE

it was decided to undertake an exercise in application
programming interface definition via prototyping.

Figure 2: Old Synergia architecture.

Prototyping Efforts
The most recent prototyping exercise has been guided

by the goal of being able to define the minimal set of
IMPACT components that is necessary to develop a
meaningful Python-steered simulation. After identifying
the appropriate components, we can experiment with their
interfaces by wrapping them with Forthon. Once the
components are loaded into a Python interpreter, we then
can use Python’s extensive runtime capabilities to further
experiment with the components.

The development process allows us to separate and
tease apart the necessary components from the rest of the
library. The process again has been invaluable in terms of
what we have learned about the internals of IMPACT. It
has also demonstrated sufficient justification for
undertaking a more formal refactoring effort.

Figure 3: New Synergia architecture.

Future Refactoring
Refactoring an existing software architecture is a set of

processes for modifying the structure of a software
system while preserving its original function [4]. It is
generally understood that refactoring techniques are used
to facilitate the evolution of a software architecture.

In order to verify that the system’s behaviors have been
preserved, it is necessary to develop a thorough testing
suite. This is an ongoing effort, and it has been aided by
our other investigations into the structure and function of
IMPACT.

A standard set of Fortran refactorings, such as cleaning
up the global namespace and adding parameters to
subroutines is already underway. A more rigorous,
structure-based refactoring will be performed once the
final set of internal software interfaces has been defined.

The ultimate goal of the Synergia prototyping and
refactoring efforts is a software architecture wherein all of
the system’s components have a well-defined Python
interface (see Fig. 3).

APPLICATIONS
The intended outcome of the prototyping and

refactoring processes is a more flexible and extensible
software system. These qualities will facilitate the adding
of new physics modules. Among the proposed additions
are beam-beam, impedance, and possibly electron cooling
modules. The beam-beam effort is briefly described in the
next section.

We intend to extend Synergia by incorporating a
module that will be useful in understanding the
characteristics of high-intensity colliders. At higher
intensities, beam-beam collective effects become
increasingly important. This module will be an extension
of the parallel calculation of these effects as is described
in Qiang [5].

TOOLS
In addition to the libraries and software tools that have

been described above, the Synergia framework takes full
advantage of the glue-language capabilities that Python
offers by integrating a variety of other tools.

Octapy
Octapy is Octave embedded in Python. The Synergia

framework uses Octave as part of its data analysis suite.
Octapy allows Python code to call arbitrary Octave code
and transparently exchange values between the two
languages. Octapy was developed by one of this paper’s
authors (Amundson).

PyPar
PyPar [6] is a Python module that provides bindings for

a subset of the Message Passing Interface (MPI). One
distinct advantage that PyPar has over other Python-MPI
solutions is that it does not require a recompilation of the
Python interpreter.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 1926

CONCLUSION
We have described the software development effort that

has been undertaken to in the context of the Synergia
beam simulation framework. Currently, most of our effort
is focused upon prototype-building and refactoring of the
IMPACT library. The end result of this work will be a
more flexible and extensible software architecture.

REFERENCES
[1] J. Qiang, R. D. Ryne, S. Habib and V.Decyk, J.

Comput. Phys. 163, 434 (2000).
[2] L. Michelotti, FERMILAB-CONF-91-159 presented

at 14th IEEE Particle Accelerator Conf., San
Francisco, CA, May 6-9, 1991.

[3] http://hifweb.lbl.gov/Forthon.
[4] T. Mens, “Refactoring: Current Research and Future

Trends,” Preliminary version for LDTA’03 workshop
at The European Joint Conferences on Theory and
Practice of Software (ETAPS’03), Warsaw, Poland,
April 5-13, 2003.

[5] J. Qiang, et al, Parallel Strong-Strong/Strong-Weak
Simulations of Beam-Beam Interactions in Hadron
Accelerators, Beam Halo Dynamics, Diagnostics and
Collimations, J. Wei, W. Fischer, P. Manning, eds.,
AIP (2003).

[6] http://datamining.anu.edu.au/~ole/pypar.

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

1927 0-7803-8859-3/05/$20.00 c©2005 IEEE

