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Abstract 
We consider a spherically symmetric, homologously 

breathing, space-charge-dominated beam bunch in the 
spirit of the particle-core model.  The question we ask is: 
How does the time dependence influence the population 
of chaotic orbits?  The static beam has zero chaotic orbits; 
the equation of particle motion is integrable up to 
quadrature.  This is generally not true once the bunch is 
set into oscillation.  We exemplify how the population of 
chaotic orbits evolves to build a halo.  We also compute 
an integral of particle motion in this time-dependent 
potential, and in the process show that this computation 
would seem to reflect in near-real time the character of the 
orbital evolution, including transitions between chaos and 
regularity.  We then introduce colored noise into the 
system and show how its presence modifies the dynamics.   

OVERVIEW 
Although detailed microscopic dynamics has been 

studied and characterized to a significant extent in both 
time-independent and time-dependent space-charge 
potentials [1], much remains to be learned, especially in 
regard to how microscopic evolution drives the 
macroscopic properties of the charged-particle beam.  The 
beam can be viewed unequivocally as a collection of N 
interacting particle orbits.  Liouville’s Theorem applies 
rigorously to the respective 6N-dimensional phase space, 
yet this fact is not especially helpful computationally.  
Thus, one appeals to the BBGKY hierarchy of s-particle 
reduced distribution functions (s ≤ N), decomposes these 
distribution functions into a hierarchy of correlation 
functions, and then appeals optimistically to time-scale 
arguments to truncate this hierarchy.  The end result is, to 
lowest order, the Vlasov-Poisson-Maxwell equation, and 
to next order, the Landau kinetic equation [2].  In either 
case one has an equation for the evolution of the 
distribution function of particles in the 6-dimensional 
phase space of a single particle.  Yet, to do this, one in 
fact sacrifices some of the physics, usually by arguing that 
orbits quickly “forget” their initial conditions so that their 
mutual interactions in effect constitute a Markov process.  
One major consequence of this argument is that 
Liouville’s Theorem generally will not apply to the 6-
dimensional phase space.  For example, the kinetic 
equation explicitly folds in a non-Liouvillian “collision 
term” that enables internal free energy eventually to 
thermalize.  From a practical point of view, this means the 
volume of phase space subtended by the N particles tends 
to grow, and hence, so does the full emittance. 

In this paper, we adopt the Vlasov-Poisson picture.  We 

take the density and potential to be coarse-grained, and 
we regard individual particles to move in response to this 
globally coarse-grained potential.  In other words, we 
assume that the “continuum limit” is valid, although it has 
been shown for beams that this is not necessarily true [3].  
However, our interest here is to isolate the importance of 
time dependence for the evolution of a beam bunch; we 
thus purposely avoid any other complication inherent to a 
real beam.  As will be demonstrated, time dependence 
alone triggers complicated evolutionary dynamics.  How 
the dynamics drives the macroscopic properties of the 
beam can readily be understood in terms of mixing, and 
the qualitative behavior of this mixing depends critically 
and unequivocally on the nature of the orbits, i.e., whether 
they are regular or chaotic. 

Interestingly, regardless of the nature of a given orbit, 
one can compute an integral of its motion in the time-
dependent potential.  This integral has as its root the 
Hamiltonian, and it reduces to the total energy in the limit 
that the time dependence goes to zero.  In the process of 
computing this integral, we find signs that the 
computation reveals sensitively the nature of the given 
orbit in near-real time, a “feature” that we shall elaborate. 

The model that we use to illustrate the consequences of 
time dependence is a spherical, homologously breathing 
waterbag in which test particles are set into motion and 
tracked.  This is a two-parameter family of particle-core 
models, one parameter being the envelope mismatch M, 
and the other being the space-charge-depressed tune η.  
Okamoto and Ikegami previously treated a cylindrical 
version of this model [4], and their work is partial 
motivation for our investigation. 

One other feature that we shall consider is the effect of 
colored noise.  This noise is unavoidable in real machines; 
hardware and field irregularities will self-consistently 
influence the space-charge potential and hence the particle 
orbits.  This noise does work on the beam, causing 
emittance growth and halo formation.  For a 
homologously breathing KV beam, the outer KAM tori 
are robust; modest noise strength will not break them, 
although they become much more fragile if internal 
collective modes are excited [1].  Herein we consider only 
a breathing waterbag; there are no internal modes.  We 
again find the outer KAM tori to be robust; however, we 
also find that, for certain parameter choices, modest 
colored noise can nonetheless make a big difference in the 
macroscopic properties of the bunch, to include triggering 
halo formation where otherwise there would be none. 

TIME DEPENDENCE AND MIXING 
The breathing spherical waterbag model, once 

populated with test particles, constitutes a particle-core 
model.  The corresponding equilibrium distribution 
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function in the 6D (r, p) phase space of a single particle is 
f(r,p)∝[Ho-H(r,p)]-1/2 for Ho>H, H denoting the 
Hamiltonian, and it is zero otherwise.  The corresponding 
density and total potential for the bunch of charge Q are: 
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Auxiliary quantities in these expressions are: 
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in which the intermediary parameter ξ is found from the 
tune η  by solving 
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Time dependence is incorporated through the envelope: 
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The equation of test-particle motion is .Φ−∂= xx  
There are several attractive advantages of the spherical 

waterbag: (1) the distribution function, the charge density, 
and the space-charge potential are all analytic; (2) the tune  
η parameterizes the family of models, so one can readily 
explore the range from zero space charge to the space-
charge limit; (3) the equilibrium configurations are all 
stable, and (4) whereas all stationary configurations are 
integrable in keeping with spherical symmetry, chaotic 
orbits arise once they are made to breathe.  Hence, this 
(deterministic) chaos is fully attributable to the time 
dependence alone.  Thus, this family of models is ideal 
not only for answering basic questions such as how time 
dependence triggers chaoticity, but also for highlighting 
the efficacy of new techniques for quantifying this chaos 
and for analyzing nonlinear dynamics in general. 

What is utterly fascinating is that one can ‘watch’ 
clumps of test particles that are initially tightly localized 
in phase space evolve to fill in the Poincaré surface of 
section (PSS); the wildly chaotic orbits quickly migrate to 
fill the chaotic sea, ‘sticky’ chaotic orbits eventually break 
into the chaotic sea and migrate away, while the regular 
orbits slowly mix to fill the regular islands.  One can 
likewise watch chaotic particles migrate to form a halo.  
In fact, chaotic orbits mix exponentially through the phase 
space accessible to them, while regular orbits mix 
secularly (as a power law in time); these qualitative 
differences are manifest in Fig. 1. 

Figure 1.  Stroboscopic snapshots of mixing in a spherical waterbag with M=0.5, η=0.15.  The first 5 plots illustrate evolution of 3 
clumps, each with 1000 initial conditions tightly localized (all with zero initial velocity) in regions of phase space known to be: 
wildly chaotic (blue), regular (green), and sticky chaotic (red). Hard-to-see particles are flagged.  Note that in the 5th plot (t=420 tD, 
i.e. 420 space-charge-depressed orbital periods) there are some red particles in the ‘ears’, i.e., the halo.  For perspective, a 1 GeV 
proton linac would span ~100 tD, i.e., this figure is meant to exemplify transient dynamics, not necessarily a real machine.  The final 
plot shows the complete PSS computed with 500 test particles that were initially distributed according to the waterbag density profile. 
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AN INTEGRAL OF MOTION 
We construct this integral by augmenting the technique 

of Struckmeier and Riedel [5].  The result for a one-
dimensional potential Φ(x,t) is: 

,0)0()0(,1)0(

,0)(2)2()2/(

,4/)2(2/)(),,(
2

===

=+Φ∂−−Φ∂+Φ∂+Φ+

+−+−−=

fff

cbbxffxfx

cxbxfpbxftpxfHI

xtx

where b=b(t) and c=c(t) are arbitrary functions of time 
that are to be chosen for convenience in solving a given 
problem (thereby affording freedom to define a “gauge”), 
and f(t) is an auxiliary function of time only.  To solve for 
the integral I computationally for the waterbag (thereby 
proving its conservation) requires letting the terms 
involving b(t) add to zero and integrating a given orbit 
while simultaneously solving for f(t) and c(t).  An 
interesting “discovery” came to us in the process.  It 
seems that if the orbit is regular, the auxiliary functions 
are well-behaved (stable), but if any part of the orbit is 
chaotic, these functions blow up exponentially (yet the 
integral is still conserved and the orbit remains stable).  
One example of such behavior is depicted in Fig. 2.  The 
orbit plotted there is initially chaotic, as is known by 
evaluating its Lyapunov exponent.  Note that f(t) indeed 
blows up from the start.  Then we purposely damp the 
breathing, thereby causing the orbit to become regular.  
And, finally, the breathing is restored so that the orbit 
again becomes chaotic.  Note that: (1) f(t) continues to 
blow up, even during the regular interval, (2) the orbital 
transitions are reflected at once by way of a change of 
slope in the ln[f(t)] vs. t plot, and (3) the frequency 
content (just one frequency for the regular epoch) is 
clearly reflected in this plot.  In view of these findings, 
and in view of how sensitive this function is to the 
detailed orbital dynamics, perhaps it can be used to 
distinguish, in near real-time, orbital transitions from 
regular to chaotic and back.  This is a question to be 
answered in future work.  

INFLUENCE OF COLORED NOISE 
We incorporate colored noise in the breathing frequency 

ω (ω=1 here); its influence depends on its strength 〈|δω|〉 
and autocorrelation time tc.  With tc=12tD, we investigated 

a broad range of strengths, specifically 2·10-4 ≤ 〈|δω|〉 ≤ 
0.05, and found that, just as for the breathing cylindrical 
KV beam of a previous study [1], the outer KAM tori in 
the Poincaré surface of section are resilient; only very 
strong noise breaks them.  However, a counterexample 
appears in Fig. 3, derived from sequential computations of 
10,000 orbits initially distributed per the waterbag density, 
with noise randomly generated for each orbit separately.  
In this case, a modest noise strength 〈|δω|〉=0.01 breaks 
the outer tori and enables particles to leak into a halo 
having the same dimensions as that of Fig. 1. 

 
Figure 2.  Transient chaos (intermittency) in a rigged waterbag.  
(top) Black curves are R vs. t, showing the oscillations are 
damped during t∈[100,200].  The red curve is the orbit (chaotic-
regular-chaotic).  (bottom) The auxiliary function ln|f(t)| vs. t 
with obvious demarcation of the orbital transitions. 
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Figure 3.  Poincaré sections for a waterbag with η=0.25, M=0.50, and (left-to-right) noises of 〈|δω|〉 =0, 0.0005, and 0.01. 
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