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Abstract

Start to end simulations are discussed in the light of our
plans for a 3 mA, 1.8 MW proton beam at the PSI cyclotron
facility [1].

MOTIVATION

Within the scope of the high intensity upgrade described
in [2, 1] and maintaining the outstanding performance with
respect to low losses and high availability, there is a strong
imperative, for start to end simulations of our proton cy-
clotron facility. There are two levels of understanding:
qualitative and quantitative. Our aim is to improove on
the quantitative level in order to have a theoretical model
available which allows us to accurate: i) match diagnostics
like (rms) beam sizes and tunes ii) predicting losses and iii)
predict new operation modes.

TOOLS

From the modeling side, there are two major areas of
endeavor: space charge which implies (large) n-body sim-
ulations and large range of scales which must be resolved.
A careful selection and implementation of the used mod-
els are of utmost importance and are described in the next
sections.

Space Charge Solvers

When modeling space charge dominated beams, one of
the key elements is accurate and fast Poisson solvers. The
fundamental steps in calculating �E, the electric self field
are: a Lorentz transformation in the beam’s rest frame x′ =
L(x), interpolation of qi(x′) to obtain ρ, the charge density
on a discrete space (grid). Then we solve:

−�u =
ρ

ε0
on Ω, (1)

u = 0 on ∂Ω, (2)

where Ω ⊂ R3 is a bounded domain, x ∈ Ω and ε0 is
the permittivity of vacuum. We then obtain the fields in
the beam frame: �E′ = −∇u, �B′ = 0 followed by an
interpolation: �E′(x′) at particle positions x′ from �E′. The
back transformation to the beam frame {�E(x), �B(x)} =
L−1( �E′) ends the field calculation.

One of the most used solvers is direct FFT based solvers
(no discretization of the�-operator). G denotes the Greens
function in open space, while variables with hats are in
Fourier space. To obtain the scalar potential in the beam

frame, we interpolate ρ and G onto a rectangular grid,
followed by a Fourier transform to obtain ρ̂ and Ĝ. De-
termining û = ρ̂ ∗ Ĝ and transforming them back gives
u = FFT (û)−1. Computing �E′ = −∇u using a sec-
ond order finite difference scheme and interpolate �E′(�x′)
at particle positions �x′ from �E′. The use of FFT reduced
the computational complexity fromO(N2) toO(N log N)
with N denoting the grid size. Using parallel FFT’s one can
easily parallelize this scheme and integrate it into a particle
tracking program [3].

In the case of large and complicated boundaries we pro-
pose a finite element based Poisson solver (using trilinear
finite elements) with a semi unstructured grid [4]. The
resulting linear system of equation is then solved with a
multigrid. A multigrid algorithm [5] is used to solve the
linear system of equations resulting from the finite element
discretisation. Table 1 shows excellent scalability with re-
spect to the problem size M which is equivalent to handle
in the order of 1011 macro particles in simulation with rea-
sonable computing time. For this scaling study we use the
Seaborg (IBM SP-3) computer at NERSC.

P M TgP/M T TP/M

8 625,464 3.5e-3 3.1 3.9e-5
32 306,080 8.5e-3 0.78 8.1e-5
248 4,751,744 5.90e-3 1.2 6.2e-5
248 36,998,619 7.50e-3 7.7 5.1e-5
960 23,312,735 4.85e-3 4 1.64e-4
2025 405,242,845 6.60e-3 10.7 5.3e-5
4075 7,166,171,845 8.76e-3 160 9.9e-5

Table 1: Scalability of the parallel grid generator TgP/M
and the Poisson solver showing also T , the time in seconds
for one Multigrid step.

MAD9P (Methodical Accelerator Design version
9 - parallel)

MAD9P is a general purpose parallel particle tracking
program including three-dimensional space charge calcu-
lation [3]. MAD9P is based on the Vlasov-Maxwell equa-
tions. In this model, particle motion is governed by exter-
nal fields and a mean-field approach for the space-charge
fields. Particle collisions and radiation are neglected. The
total Hamiltonian for a beam line element can be written
as a sum of two parts, H = H1 + H2, which correspond
to the external and space charge contributions. A second-
order integration algorithm (split operator) for a single step
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is then given by

Mk(τ) = M1
k(τ/2)M2

k(τ)M1
k(τ/2) +O(τ3) (3)

where τ denotes the step size, M1
k is the map correspond-

ing to H1 obtained by differential algebra methods from a
general relativistic Hamiltonian and M2

k is the map corre-
sponding toH2. M2

k is obtained by discretizing the result-
ing Poisson problem on a rectangular mesh using Fourier
techniques, as described in the second section of this pa-
per. Open and periodic boundary conditions can be cho-
sen. Once the physical elements are put together in an
arbitrary way the elements are assumed to be perfectly
aligned. To every beam element belongs a corresponding
transfer map M2

k which maps every initial condition ζi of
the six dimensional phase space onto a final condition ζf

by ζf = M2
kζi. MAD9P derives M2 by a Lie algebraic

method.

Modeling RF-Structures

To further increase the accuracy of the simulation we re-
place the thin lens approximation by full particle tracking
in the RF cavity. Thus, both the electric field �E(�x, t) and
the magnet field �B(�x, t) need to be known in the cavity.
Therefore the standing electro-magnetic waves in the cav-
ity with the lowest frequencies have to be determined. This
amounts (after separation of time/space variables and after
elimination of the magnetic field intensity) to solving the
eigenvalue problem

∇×∇× �e(�x) = λ �e(�x), �x ∈ Ω,

∇· �e(�x) = 0, �x ∈ Ω,

�n× �e = 0, �x ∈ ∂Ω,

(4)

where λ = ω2/c2 and �e is the normalized electric field
intensity. We use the weak formulation proposed by
Kikuchi [6].

We discretise the field �e by second order edge ele-
ments proposed by Nédélec [6] the Lagrange multiplier are
second order node elements. This yields a large sparse
constrained matrix eigenvalue problem. The eigenvalue
problem is solved numerically using our own implementa-
tion of the Jacobi-Davidson (JD) algorithm introduced by
Sleijpen-van der Vorst [6]. The calculated E- and B-fields

Figure 1: color: E- (left) and B-fields (right) of the funda-
mental mode in the new cavity of the PSI 590 MeV ring
cylotron.

in the cavity (cf. Fig. 1) will be soon integrated into the
MAD9P tracking code.

Efficient Parallelization

Efficient parallelization of a code can only be achieved if
the code is implemented in a suitable language, for example
C++ and MPI (Message Passing Interface) augmented with
the concept of expression templates originally proposed in
[7]. This ansatz allows C++ to achieve the same perfor-
mance on vector and matrix expressions as with Fortran.
Expression templates are used in MAD9P, explained in the
subsequent section. The eigenvalue solver discussed above,
is implemented in C++ using Trilinos [8], a collection of
robust parallel solver algorithms for large-scale scientific
applications.

FROM 870 KEV TO 590 MEV

Next we show simulations and results all the way from
the 870 keV injection line to the Ring cyclotron.

B870 Injection Line

The starting point for all B870 injection line calcula-
tions is a 4-dimensional transverse phase space distribu-
tion, which has been proven satisfactory by its use in the
daily operation of the beam line. The longitudinal dimen-
sions are uniform in space and momenta. The initially
DC beam is modeled by using a characteristic longitudi-
nal beam length of βλ, where λ is the wave length of the
RF. The double gap buncher is modeled by (analytic) sinu-
soidal momenta modulation of the beam. Fig. 2 shows the
horizontal beam envelope (similar results are obtained in
the vertical direction after fitting the 4-dimensional trans-
verse distribution and a global space-charge neutralisation
factor fe using a stochastic fit algorithm based on Simu-
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Figure 2: color: Horizontal beam profiles.

lated Annealing.
Good agreement between measurement and simulation

is obtained, the space-charge neutralisation factor fe =
0.59 is in the expected range (for reference see [3]).

Injector 2, Coasting Beam

A model of the Injector 2 lattice based on hard-edge el-
ements is used for various coasting beam simulations. The
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2D results of Adam [9], which predict a stable round distri-
bution in horizontal- longitudinal configuration space has
been verified (see Fig. 3) with the full three-dimensional
model. The data shown in Fig. 3 are for 5 MeV and 1 mA.
The effect of the beam intensity on the development of the
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Figure 3: color: Charge density in a.u.: Turn 1 and 60.

rms beam sizes in the horizontal and longitudinal directions
is shown in Fig. 4 for 60 turns. The strong oscillations in
the first few turns are due to an initial ‘mismatch’ of the
beam. The fact that the rms beam size increases with in-
creasing beam current strongly suggests that a detailed un-
derstanding of the matching condition might be the key to
a very fast development of the desired round and stable dis-
tribution.

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0 25 50 75 100 125 150 175 200 225
0

0.002

0.004

0.006

0.008

0.01

0 25 50 75 100 125 150 175 200 225

Figure 4: color: Horizontal and Longitudinal rms beam
sizes at different intensities over 60 turns.

Injector 2 Including Collimation

To fix the non trivial initial conditions we start with one
turn and the estimated particle distribution from [3]. Af-
ter lengthy precision work on positioning the collimators
and fine tuning details of injections, we were able to sim-
ulate the very beginning of Injector 2 with satisfactory re-
sults. The amount of beam deposition on some collimators
as well as the collimation process shown in Fig. 5 are well
in agreement with observation. The z-axis is the direction
of beam propagation and the x-axis points to the center of
the cyclotron. Looking at Fig. 5 makes it clear that the
bunch center rotates itself, the lower arm is expanding and
the bunch has been collimated at the right place. The ac-
celeration model in MAD9P is thus usable and promises
detailed beam dynamic analysis in the near future.

Figure 5: Spatial particle density in a.u before KIP1 and
after KIP2.

Ring Beam-Cavity Interaction

A mode-expansion method [10] is used for the represen-
tation of beam-excited fields in the ring cyclotron. For the
determination of the mode amplitudes and phases it is re-
quired to calculate the parameters of zero beam-current tra-
jectories from cyclotron injection to extraction.

The ESIL eigenmode solver in Omega3P allows to
calculate Higher Order Modes (HOMs) of the entire
cyclotron-structure as basis functions for the mode-
expansion. A set of 280 eigenmodes with resonance fre-
quencies close to harmonics of the beam-crossing fre-
quency is found and 30 particularly critical modes are se-
lected. Their eigenfields are interpolated onto a structured,
cylindrical grid, located in the midplane.

Subsequent tracking of about 100’000 macro-particles
with with 2d space-charge corrections and comparing the
beam-shapes of a simulation with consideration of HOMs
to results from a HOMless simulation indicates that the ef-
fect of beam-excited fields onto the beam-quality is rela-
tively small for the beam-currents of about 2mA.
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