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Abstract

The beam-beam effect is a significant source of non-
linearities in the Tevatron. We have developed a code
which allows us to estimate its contribution to the finite
lifetime of the anti-proton beam, both at collision and in-
jection energy, by tracking realistic particle distribution for
a high number of terms and extrapolating from the particle
loss rate. We describe the physical modeling underlying
the code and give benchmarking results.

INTRODUCTION

In its current operating mode, the Tevatron operates
with 36+36 (anti-)proton bunches circulating in the same
beampipe on separated helices and being brought to colli-
sion in two interaction points, B0 and D0 at an collision
energy of 980GeV.

Thus, each bunch will experience 2 design and 70 para-
sitic collision with an antagonist bunch. The pattern of par-
asitic crossings experienced by the weak bunch will depend
on the cogging stage and the number of the bunch in its
train; a three-fold symmetry introduces equivalence classes
of bunches, reducing the number of discernible bunches to
12.

In the injection stage with an energy of 150GeV, the he-
lices are completely separated, leading to 72 parasitic col-
lisions. In both cases, the beam-beam effect will exert
strongly non-linear forces on the anti-proton bunch, pos-
sibly leading to particle loss due to diffusion or incoherent
resonances. In the past, we have been able to predict parti-
cle loss rates and extrapolate lifetime signatures for differ-
ent operating parameters with long-term tracking studies
using a crude approximation of the lattice dynamics of the
Tevatron. In this paper, we study a more careful implemen-
tation aimed at preserving the more important non-linear
effects of the lattice, in particular chromaticity, while re-
taining the high tracking speeds necessary. We can not ex-
pect absolutely to predict beam lifetimes (at injection and
collision, the typical timescales are 10h and 100h; requir-
ing about 1012 and 1014 particles·turns simulation effort,
resp.), but attempt to establish signatures of beam loss rates
for different operational parameters.

PHYSICAL MODELLING

The goal of our tracking studies is to obtain insight into
beam loss rates and lifetimes by tracking macro-particles
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for very long times and recording their amplitude vs. time
behavior, thus going beyond the more conventional dy-
namic aperture calculation which only provide a limited
insight about the machine behavior.

Clearly, a full simulation of the machine–full number of
particles, full lattice, full machine-time simulation–is be-
yond today’s computational resources. We have to restrict
ourselves to

• a simplified model of the lattice. While retaining all
beam-beam interactions exactly, the rest of the lat-
tice can be lumped together as either linear elements;
chromatic elements (see below), or can be treated
element-by-element, where multipoles are handled to
the required order, other elements symplectically with
up-to-cubic hamiltonians.

• a restriction of the number of turns and the number of
particles; the maximum NTurnsNParticles is limited
by the speed and number of CPUs available; a rough
estimates shows that we require NTurnsNParticles ≥
1010 to predict lifetimes in the range of hours.

• the restriction of the number of turns forces us to ex-
trapolate from the loss rate vs. turn number to its long
term behavior. Solutions for the diffusion equation
with absorbing boundary conditions (provided by the

scraping aperture) behave as ∝ e−
√

t/T and ∝ e−t/T

for small and large apertures, resp.; we use T s ob-
tained by a fitting to both asymptotic behaviors to
characterize loss rates.

THE TRACKING CODE dumbbb

To address the issues laid out in the previous sections, a
code, ’dumbbb’, was developed. Great care was taken to
yield maximum speed for raw tracking while retaining the
flexibility of a general-purpose tracking code; i. e., easy
set-up and manipulation of beamlines and parameters as
well as flexibility in the choice of accuracy of the physical
model and the resulting speed trade-off.

The structure of the code and the programming tech-
niques used as well as a beam dynamics C++ library used
as a programming environment are described in more detail
in [5].

Lattice Manipulation

dumbbb will read a MAD 8.x conformant input file. As
the MAD syntax seems not to be formally defined, the
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parser is restricted to the well-defined subset of files gener-
ated by MAD’s SAVE command.

The read file is converted to an internal representation,
allowing for manipulation of elements and beamlines. In
particular, a MAD definition can be expanded into a flat
lists of beamline elements; flat lists, in turn, can be subject
to insertions at arbitrary longitudinal positions, including
within elements, which are split in two sections. This is
used for inserting beam-beam elements at positions accord-
ing to the currently examined bunch and cogging stage.

Elements

The flat list of elements acts as a ’class factory’ for track-
ing elements proper. Each MAD element will generate
a finite number of tracking elements, acting on particles’
phase space vectors. The currently implemented elements
and their implementation methods are:

• Drift Spaces. Either linear or first-order chromatic.

• Quadrupoles. Either linear or first-order chromatic.
First-order chromaticity is implemented either by the
exact solution of the 3rd-order Hamiltonian or by a
sequence of thick-lens matrices and chromatic thin-
lens kicks.

• Sector Bends. Either linear or first-order chromatic.
Chromaticity is implemented as a sequence of thick-
lens matrices and kicks according to the 3rd-order
Hamiltonian.

• Multipoles, RF Cavities, Electrostatic Separators Im-
plemented by a sequence of, possibly chromatic, drift
spaces and thin-lens kicks.

• Beam-Beam Elements, Tune Prints, Apertures, Coun-
ters. See below.

Lumping and Optimization

The generated beamline and its elements can act ei-
ther on raw floating-point phasespace vectors x or on
differential-algebraic (DA) objects x+α1dx+α2dx∨dx+
. . .. At program startup, the closed orbits of both rings are
determined (by Newton iteration) and differential-algebraic
maps around it are constructed.

We then find the (3 each) eigendistributions’ correlation
matrices of the proton beam, use the emittances to construct
beam matrices which, together with the orbit offsets with
respect to the anti-proton orbit, are used to construct beam-
beam elements at the 72 crossing points. Strictly speaking,
this procedure should be iterated until convergent.

The interjacent elements can then be lumped together in
a symplectic fashion, either by using a chromatic map (see
below) or just a linear map. If no lumping is used, an op-
timization steps joins elements whose adjacent maps can
be simplified, e.g., a sequence of two drift spaces, linear
transfer elements, or thin-lens multipoles.

Using the full Tevatron lattice as of March, 2005, which,
in our representation, comprises 12902 tracking elements,
we obtain the tracking speeds given in 1. It should be noted
that, given the estimated turn number from above, track-
ing element-by-element to obtain absolute lifetimes is not
without the realm of the possible.

Table 1: dumbbb Tracking Speeds for Different Physical
Models (on a 1.8GHz Xeon Processor

Model Speed[turns/s]
200 Sextupoles + Chroma lumping 5700
9 6D slices + 70 4D parasitics 6200
+ 200 Sextupoles + Chroma lumping 3200
+ elment-by-element 610

Code Validation

We have carefully checked the validity of the tracking
part of our code by comparing to established tools such as
MAD 8.x. Optical functions on the zero orbit generally
agree to CPU precision, on the helices, deviations of 10−5

can be observed, which can be traced back to the thin-lens
approximation for the electrostatic separator in dumbbb.

Element-by-element tune prints (calculated by the
Laskar method in dumbbb) show excellent agreement.
Symplecticity of all element and lump maps is checked at
program startup by tracking DA vectors; usually, the quan-
tity

√∑
ik(M�JM − J)2ik < 10−12.

A Symplectic Prescription for Chromatic Lump-
ing

One of the dilemmas of high-order ’lumped’ tracking is
the non-symplecticity of a truncated power series expan-
sions of a section map. This can be remedied by very high-
order expansion, which is computationally expensive, or by
any of a number of symplectification approaches.

For the problem at hand, chromatic effects seem to be of
significant importance. When handling sextupoles in dis-
persive sections correctly, the chromaticity of the interja-
cent section also has to be implemented correctly to obtain
the correct net chromaticity.

This can be achieved by writing the total map of a sec-
tion as M̃ = M(1 − ptG) + O(p2

t ) = Me−ptG + O(p2
t ),

where M is the linear part of the map and G is a symplec-
tic generator acting on the transverse subspace; it is ob-
tained by evaluating the third-order map around the disper-
sion orbit. e−ptG is symplectic by construction. By writing
H = − 1

2JG and expressing H in an eigenbasis of G, the
Hamiltonian reduces to any of three forms:

• H = αpq, a rescaling operation

• H = β
2 (p2 + q2), a harmonic oscillator

• H = γ
2 (p2−q2+P 2−Q2)+δ(qP−Pq), an isotropic

repulsive oscillator in a rotating frame of reference.
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All these case can readily be evaluated either in closed form
or as a sequence of 3 thin-lens kicks by determining the
eigenvectors of JG and constructing a canonical basis in
which it has harmonic oscillator form, reducing the prob-
lem to at most two quadrupole transformations.

Beam-Beam Effects

At present, the Tevatron is operated in the weak-strong
regime of the beam-beam interaction. Assuming gaussian
distributions, the effect on the antiproton bunch can then
be calculated using the Bassetti-Erskine formula[3], which
involves the evaluation of the complex error function.

While not the dominant part of CPU time for some of
the more extensive beamline models, care was taken to find
an efficient implementation. We benchmarked several nu-
meric implementation and found the prescrition given in
[4] to be fastest. Other approaches have been used in simi-
lar codes, such as Pade approximations and grid interpola-
tions.

When βx,y ≤ cσt, the hourglass effect becomes impor-
tant. We then have to slice the strong bunch and to include
the full 6d dynamics of the weak bunch; the symplectic
prescription used is given in [2]. We use several optimized
functions, distinuishing the cases of

• Four-dimensional:

– Coupling: tilted beam

– No coupling: upright beam

• Six-dimensional:

– Coupling: slice with position-dependent tilt

– Coupling: beam with constant tilt

– No coupling: upright beam

Weak Bunch Population

Lifetime calculations are based on particle migration
rates across a boundary in configuration space. It is
safe to assume that, for realistic distances of that bound-
ary, most of the particles in that bunch will never cross
that boundary within the simulated time; these stable par-
ticles will be close (in action space) to the closed or-
bit. A previous version of dumbbb consequently pro-
vided a ’de-coring’ option, restricting bunch population to
particles far (in action space) away from the closed or-
bit. Because of the high dimensionality of phasespace,
the action radius of the omitted core has to be chosen
quite large to result in an appreciable reduction of the
particle number. This is unsatisfactory, however, as for
high actions the deformation of surfaces of equal ac-
tion due to the nonlinear dynamics becomes significant.
The present version of dumbbb thus uses a weighted-
macroparticle approach: The weak bunch is represented
by particles equidistributed in radial and angular space
in six-dimensional spherical coordinates; particles carry a
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Figure 1: Typical Particle Loss Rate from Simulation Run

gaussian weight exp−r2/2r5drddϑ4 sin4 ϑ1 . . . ϑ5. The
cutoff radius of the distribution can be chosen freely. The
radial and angular distribution is generated from an unique
integer particle tag by means of a Halton pseudorandom se-
quence over the first 6 primes, thus reducing charge distrib-
ution noise and facilitating parallelization and reproducibil-
ity of simulation runs. It should be noted that, by weighting
particles and recording their migration rates, post mortem
emittance parameter scans for loss rates are possible by re-
assigning weights according to different emittances.

Simulation Runs

We have ported the code to the DOE’s NERSC facility
SP computers and performed runs on 256 nodes each, vary-
ing chromaticity in steps of 5 from 0 to 20. An evaluation
of the results will be the subject of a forthcoming paper. A
typical particle loss rate is shown in figure (chromaticity 5,
aperture 5.8σ).
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