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Abstract

Previously it has been shown that the maintenance con-
dition for a crystalline beam requires that there not be a
resonance between the crystal phonon frequencies and the
frequency associated with a beam moving through a lat-
tice ofNl periods. This resonance can be avoided provided
the phonon frequencies are all below half of the lattice fre-
quency. Here we make a detailed study of the phonon
modes of a crystalline beam. Analytic results obtained
in the smooth approximation using the ground-state crys-
talline beam structure is compared with numerical evalua-
tion employing Fourier transform of the molecular dynam-
ics (MD) modes. The MD also determines when a crys-
talline beam is stable. The maintenance condition, when
combined with either the simple analytic theory or the nu-
merical evaluation of phonon modes, is shown to be in ex-
cellent agreement with the MD calculations of crystal sta-
bility. A confirmed maintenance condition based on the
linear resonance criteria is that the lattice frequency must
not be equal to the sum of any two phonon frequencies.

INTRODUCTION
In the work that first considered the formation of crystals

in “real” machines; i.e., machines that allow the formation
and maintenance of crystal, two criteria were presented.
The first is that the machine can not be weak focusing (i.e.,
a constant gradient at all azimuths), but must be a strong
focusing machine operating below transition [1]. The sec-
ond is a maintenance condition for a crystalline beam. It
requires that there not be a linear resonance between the
crystal phonon frequencies and the frequency associated
with a beam moving through a lattice ofN l periods [2, 3].
Previously, the maintenance condition is stated as that

the lattice frequency must be larger than two times the
maximum phonon frequency, because if this condition is
not satisfied, a linear resonance occurs and any crystalline
beams will be destroyed. For a typical beam of high den-
sity with near-equal transverse (betatron) tunes, the maxi-
mum phonon frequency is near

√
2 times the higher single-

particle (bare) tune. Practically, the resonance can be
avoided if the lattice periodicityNl is larger than 2

√
2 times

the higher bare tune of (νx, νy). Here, we closely examine
cases from low to high beam density, and study in detail
phonon modes and the maintenance condition.
The phononmodes are evaluated first under the so-called
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smooth approximation analytically for a one-dimensional
(1D) structure and numerically in general using the ground-
state crystalline-beam structure, and then augmented with
computational evaluation employing Fourier transform of
particle trajectory simulated with the molecular dynamics
(MD) method. The maintenance condition based on the
evaluated phonon modes is shown to be in excellent agree-
ment with the MD simulation on the stability.
In Section 2, we present the Hamiltonian employed and

evaluate analytically the phonon spectrum. In Section 3,
we introduce the MD method and employ it to determine,
by Fourier transform, the phonon spectrum. In Section 4,
we confront these spectra with crystals that are stable, or
unstable, in MD. Section 5 is a discussion.

ANALYTICAL PHONON SPECTRUM
The phonon modes may be calculated under the as-

sumption that the external focusing is uniform in time (the
smooth approximation). In this case the Hamiltonian is:

H =
1
2

∑

i

(
P 2

x,i + P 2
y,i + P 2

z,i

)
− γxiPz,i

+
1
2

(
ν2

xx2
i + ν2

yy2
i

)
+ VC

(1)

where the Coulomb potential is VC =
1
2

∑

i�=j

1
|ri − rj |

,

|ri − rj | ≡ rij =
√

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2

The only non-linear terms are derivatives of VC , which
should be Taylor-expanded around the equilibrium posi-
tions retaining only the linear terms. Assume that

xi = Xi + δxi , δxi = x̃i exp [i(ωt− kZi)] ,
yi = Yi + δyi , δyi = ỹi exp [i(ωt− kZi)] ,
zi = Zi + δzi , δzi = z̃i exp [i(ωt− kZi)] .

(2)

Assume that the unit cell length is L, and that there are N
particles per unit cell. We obtain the linearized equations
of motion in a circular accelerator,

ω2x̃i = −iγωz̃i + (ν2
x − γ2)x̃i +

∞∑

n=−∞

N∑

j=1{[
1

R3
nij

− 3 (Xi −Xj)
2

R5
nij

] [
eik(Zi−Zj−nL)x̃j − x̃i

]

−3 (Xi −Xj) (Yi − Yj)
R5

nij

[
eik(Zi−Zj−nL)ỹj − ỹi

]

−3 (Xi−Xj) (Zi−Zj−nL)
R5

nij

[
eik(Zi−Zj−nL)z̃j − z̃i

]}

(3)
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ω2ỹi = ν2
y ỹi +

∞∑

n=−∞

N∑

j=1{
−3 (Xi −Xj) (Yi − Yj)

R5
nij

[
eik(Zi−Zj−nL)x̃j − x̃i

]

+

[
1

R3
nij

− 3 (Yi − Yj)
2

R5
nij

] [
eik(Zi−Zj−nL)ỹj − ỹi

]

−3 (Yi−Yj) (Zi−Zj − nL)
R5

nij

[
eik(Zi−Zj−nL)z̃j−z̃i

]}

(4)

ω2z̃i = iγωx̃i +
∞∑

n=−∞

N∑

j=1{
−3 (Xi−Xj) (Zi−Zj−nL)

R5
nij

[
eik(Zi−Zj−nL)x̃j − x̃i

]

−3 (Yi − Yj) (Zi − Zj − nL)
R5

nij

[
eik(Zi−Zj−nL)ỹj − ỹi

]

+

[
1

R3
nij

− 3 (Zi−Zj−nL)2

R5
nij

] [
eik(Zi−Zj−nL)z̃j−z̃i

]}

(5)

where Rnij =
√

(Xi−Xj)
2+(Yi−Yj)

2+(Zi−Zj−nL)2

and i = 1, . . . , N . Also, Rnij = 0 term is excluded from
the double sum.

1D crystalline beam
For a 1D chain of intra-particle distance L, N = 1 and

(X, Y, Z) = (0, 0, 0), the phonon bands are given by

ω2
1 =

1
2

{
ν2

x+Ω2+
√

(ν2
x+Ω2)2−8Ω2 (ν2

x−γ2−Ω2)
}

ω2
2 = ν2

y − Ω2

ω2
3 =

1
2

{
ν2

x+Ω2−
√

(ν2
x+Ω2)2−8Ω2 (ν2

x−γ2−Ω2)
}

(6)
where

Ω2 = 2
∞∑

n=1

1− cos(knL)
n3L3

≥ 0 (7)

and k varies from− π
L to

π
L . The phonon bands satisfy

3∑

i=1

ω2
i = ν2

x + ν2
y , ω2

1 + ω2
3 = ν2

x + Ω2, and ω2
3 ≤ ω2

1 .

The frequencyω2 corresponds to the motion polarized in y,
while the frequencies ω1 and ω3 correspond to the motion
coupled in x and z directions.
A test particle deviating from its equilibrium position ex-

periences through Coulomb interaction defocusing forces
in both the horizontal (x) and vertical (y) directions, and
focusing force in the longitudinal (z) direction. At a low
beam density, the phonon frequencies in both mode 1 and
2 shift downwards from the base tune, while the frequency
in mode 3 shifts upwards from 0, as shown in Fig. 1. The
typical density of states is shown in Fig. 2.
When the beam density increases, the amount of fre-

quency shift downwards in mode 2 and upwards in mode
3 also increases, as shown in Figs. 1 and 2. Because of
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Figure 1: Dispersion function evaluated under the smooth
approximation of three 1D crystalline beams with L = 3.0,
1.8, and 0.96, respectively. The tunes are νx = 2.4 and
νy = 2.2, respectively, and γ = 1.000016.
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Figure 2: Density of states corresponding to Fig. 1 evalu-
ated under the smooth approximation at three beam densi-
ties with L =3.0, 1.8, and 0.96, respectively.

the coupling in horizontal and longitudinal motion, the fre-
quency in mode 1 can also shift upwards from the base tune
νx. The amount of upward frequency shift reaches a max-
imum when the density approaches the threshold of 1D to
2D transition (Fig. 2). The maximum phonon frequency for
a stable 1D crystalline beam satisfies

ω1,3,max ≤
√

ν2
x + ν2

y , ω2,max ≤ νy. (8)

The maximum frequency is achieved when k = π/L, i.e.,
when nearest-neighbor particles i and i+1move in the op-
posite phase in each direction. The motion in the horizontal
and longitudinal directions are 90 degrees out of phase. In
the case when the equivalent focusing in the horizontal and
vertical directions are equal, ν2

x − γ2 = ν2
y , the threshold

density corresponds to

L =
(

4.2
ν2

x − γ2

)1/3

=
(

4.2
ν2

y

)1/3

. (9)

At this density value, the mode 2 frequency is down-shifted
to zero when k reaches the maximum (k = π/L).

2D and 3D crystalline beams
For a crystalline beam beyond 1D, the dispersion rela-

tion in general can not be solved analytically. We first ob-
tain the equilibrium crystalline structure under the smooth
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approximation. Then, we obtain the dispersion relation and
the density of states by numerically solving Eqs. 3-5. Fig. 3
shows the density of states of a series of 2D and 3D crys-
talline beams. The maximum frequency of the 3N phonon
bands satisfies the relation

ωmax ≤
√

ν2
x + ν2

y . (10)

Eq. 10 is expected to be a general relation independent of
the choice of machine lattice parameters.
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Figure 3: Density of states evaluated under the smooth ap-
proximation for various 2D and 3D crystalline beams with
νx = 2.4, νy = 2.1, and γ = 1.000016.

PHONON SPECTRUM FROMMD
The phonon spectrum can be directly evaluated for a

“real” lattice without using the smooth approximation by
the MDmethod, first determining the ground state and then
evaluating the density of states in the frequency domain
by Fourier-analyzing the particle trajectory under small-
amplitude vibrations. The agreement with those obtained
using the analytical method under the smooth approxima-
tion is good (L = 3.0 case in Figs. 2 and 4) [2, 3].
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Figure 4: Density of states evaluated with MD using a
“real” lattice withNl = 3 as discussed in Section 4.

MAINTENANCE CONDITION
The maintenance condition based on the linear reso-

nance criteria is that the lattice frequencymust not be equal
to the sum of any two phonon frequencies. In order to ver-
ify this condition, we study six slightly different “real” stor-
age ring lattices of 12 FODO cells with νx = 2.4, νy = 2.2,

and γ = 1.000016. The strength of the 12 FODO cells are
adjusted such that the lattice super-periodicityN l is 12, 6,
4, 3, 2, and 1, respectively. (1) WithN l = 12, the 1D crys-
tal is stable for L ≥ 0.96. At higher densities the crystal
becomes 2D and 3D. Resonances at ω = 6 are of no con-
cern. (2) With Nl = 6, the 1D crystal is stable also for
L ≥ 0.96, below this value the crystal becomes 2D and
3D. The resonance condition forbids phonon frequency at
ω1 = 3. (3) With Nl = 4, the 1D crystal is stable only
for L ≥ 2.2. At higher densities the down-shift of ω2 to 2
causes resonance. (4) WithNl = 2, the 1D crystal is stable
again only for L ≥ 2.2. At higher densities the down-shift
of ω2 to 2 causes resonance. (5) With Nl = 1, the 1D
crystal is stable only for L ≥ 3.2. At higher densities the
up-shift of ω3 to 0.5 causes resonance.
The Nl = 3 case is worth special discussion. According

to MD result, the 1D crystal is stable only for L ≥ 3.0
(Fig. 5). At the density of L ≥ 3.0, however, there is no
power density at half of the lattice frequency, i.e. 1.5. The
resonance originates from the sum of the modes near ω 1 =
2.5 and ω3 = 0.5 hitting 3 (Fig. 4).
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Figure 5: 1D crystalline beam stability for the N l = 3 lat-
tice obtained by MD.

DISCUSSIONS
In this paper we have focused on the maintenance con-

dition for a crystalline beam. We have derived the phonon
spectrum in the smooth approximation and then compared
with that obtained by Fourier transform from MD calcula-
tion. The maintenance condition based on linear resonance
criteria is that the lattice frequency must not be equal to
the sum of any two phonon frequencies. The maximum

phonon frequency is
√

ν2
x + ν2

y . For crystalline beams of

high density, this condition states that the lattice super-

periodicity Nl must be larger than 2
√

ν2
x + ν2

y , or 2
√

2
times the bare transverse tune when the two tunes are near
equal.
The formalism can be applied to crystal formation in

traps where γ = 0. Similar maintenance condition holds.
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