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Abstract

Negative ion source for spallation sources or neutral
beam injectors (NBI) for tokamaks requires carefully
matched electric and magnetic fields in the beam forma-
tion area due to the presence of three species of particles:
the collisional and fully magnetized electrons; the slightly
magnetized positive ions; the negative ions, formed within
few cm from plasma-beam interface (meniscus). As a step
towards a collisional and magnetized theory for a charged
fluid in a realistic 2D or 3D geometry, a 1D model based on
a Vlasov equation with a collision operator is written and
discussed in detail. A closed equation is obtained for the
forward directed current; its solution in modes and formu-
las for density n are given.

INTRODUCTION

Negative hydrogen ion sources are typically envisioned
for high intensity application: single aperture 35 mA beam
for synchrotron multiturn injection (H− can be injected
with a stripping foil) and multiaperture source, for produc-
ing 1 MeV 40 A beams required for tokamak heating and
current driving[1, 2]. Development of simulation codes for
single aperture sources is well debated in the literature and
based on one dimensional modelling of presheath and mi-
croscopic sheath formation [2, 3, 4]. Even if beam forma-
tion is similar in multiaperture sources, design is also con-
strained by the limited space available for the magnetic fil-
ter system (Fig. 1). It is also interesting to study 2D effects
of plasma-beam interface (meniscus) with charged fluid
models (that is �φ = F [φ] where F is a functional, rea-
sonably simple, of the electrostatic potential φ) because: 1)
at least three different charged fluid can be recognised: the
H-, produced within few cm from meniscus, the electrons
and the positive ions; 2) different magnetic filters need to
be compared; 3) optimization of electron dump and outlet
electrodes strongly depends on plasma preasheath proper-
ties and on meniscus. Improvement of beam simulation
tools and of understanding of underlying plasma physics
is likely to be in increasing demand, in view of its poten-
tial help to improve source performance and impact on re-
lated engineering issues; for example, electron beam loss
on multigrid system determines cooling requirements. In
this paper, we study the effect on the charge distribution of
ions and electrons of plasma conditions where both colli-
sion and applied magnetic and electric field are important.

A typical multigrid [5] geometry is shown in Fig. 1.
Negative H− are formed: 1) in the plasma volume near the
source extraction holes (typical path length for H− neutral-
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ization λn is few cm), provided electron temperature Te (in
energy unit) is sufficiently low (Te

∼= 1 eV) and an abun-
dant supply of H2 molecules with vibration levels excited is
coming from inner plasma regions [1]; 2) on Cesium cov-
ered walls near the extraction. Even if the mechanism 2 is
more efficient, preliminary tracking simulation shows that
a fine tuning of the electrostatic potential φ and magnetic
field B is needed for extraction [6].

Let z be the beam axis direction, with z = 0 the plasma
grid (in following 1D model, z = 0 will be the plasma
boundary and z < 0 the plasma region). For numerical
examples, we assume a total positive ion density n+

∼=
1017 m−3, while the total H2 density is about 1020 m−3

(0.41 Pa at room temperature).
We find two permanent magnet systems, the extrac-

tion filter (bar longer axis y) and the inner filter (usually
crossed, with axis x). The former filter with middle plane
z = ze

∼= 10 mm and periodicity d ∼= 25 mm gener-
ates a vector potential component Ay(x, z), with a peak
Ay

∼= 500 G cm at ze. Typically Bx
∼= 30 to 100 G at

z = 0 and |Bx| peaks in the extraction gap; this filter has
the main purpose of steering the residual electron current
(with density je) away from the axis and against the extrac-
tion grid, leaving the ions (of current density jH−) with a
direction substantially unaffected (

∫
Bxdz = 0). The in-

ner filter with midplane zf (typically zf
∼= −50 mm) and a

Bf = 50 G peak has the purpose of weakening the flow of
warm electrons with Te

∼= 3 eV [1] from the inner plasma
to the H− production region, since they effectively disso-
ciate H−. Requesting that the collision frequency of elec-
trons νei = kene/T

3/2
e with ke = 6.3×10−11 m3 eV3/2/s

be greater than the cyclotron frequency gives a condition

Ee =
3
2
Te ≤

3
2

(
kenem

eBf

)2/3

∼= 0.1eV (1)

for the efficient transmission of electrons to the H− pro-
duction area. Then, even considering filter imperfection
and heating by ion collisions and by potentials, Te

∼= 1 eV
is easily attained in H− production region.

Let φ = 0 on the plasma grid; φ is determined by

�φ = −(e/ε0)(nH+ − ne − nH−)[φ] (2)

(where the functional dependence of n from φ is put in ev-
idence) and by the selfconsistently determined plasma po-
tential φp [6] and by the extraction grid positive potential
Vext, which also controls the plasma-beam interface po-
sition. In the H− sources, we expected a comparatively
deep penetration of the positive potential since electrons
are rapidly accelerated to form a beam and the magnetic
field B is weak at z = 0. Anyway a detailed balance of
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effects of B, of collision and of φ is necessary for quantita-
tive analysis and is outlined later. It should be noted some
degree of Vext shielding is provided by electrode geometry
(non-Pierce plasma electrode angles [4], hole depth).

In positive ion source or in collisionless and B = 0
plasma models, nH+ reduces to well-known expressions
of φ and of vzi, the assumed ion initial velocity at z =
zi: n(z) = 1

2n(zi)vzi/
√

v2
zi + (2e/m)[φ(zi)− φ(z)] and

similarly for the electrons in the beam. Plasma elec-
trons are instead considered completely thermalized (see
Ref. [7] for some discussion of this), so that ne(z) =
n0 exp(eφ(z)/Te). Both n dependencies are local, so that
eq. 2 can be still solved as a standard (even if nonlinear)
partial differential equation. On the contrary, considering
collision and magnetic field we generally find n to depend
globally on φ; integro-differential equations for n and j
will be approximately solved by eq. 18, introducing a mode
decomposition and giving a relation n[φ] similar to local
ones.

N

S

S

N

N

S

S

N

N

S

S

N

PG

z

ACCELERATION
GRIDEXTRACTION GRID

H
- 

P
ro

du
ct

io
n 

(P
L

A
SM

A
+C

s 
SU

R
F

A
C

E
)

IN
N

E
R

 P
L

A
SM

A

IN
N

E
R

 F
IL

T
E

R
 R

E
G

IO
N

d

H- BEAM

e beam ZeZf

x

Figure 1: Typical extraction geometry (not to scale): PG =
plasma grid; circles are cooling water channels

KINETIC EQUATIONS

For fig. 1 geometry a 2D model, where y coordinate
is ignorable, is well appropriate. Moreover for the cen-
tral part of each hole, where penetration of Vext is deeper,
Bz = ∂xAy

∼= 0 and Ex
∼= 0 so that no x variation of Ay

and φ need to be considered in first approximation, obtain-
ing a 1D model. Similarly we assume Ax = 0 (thus the
inner filter region is ignored, or inner filter is considered
aligned with extraction filter). The phase space distribu-
tion f is integrated on x, Px, so that it depends only on z
and momenta P̃y (canonical and invariant of the motion)
and p̃z; we assume a common background temperature T
(for example 1 eV) for the three species. The normalized
hamiltonian h = H/T is

h(z, pz;Py) = 1
2p2

z + 1
2 (Py − a(z))2 + v(z) (3)

with the normalized momenta Py = P̃y/
√

mT and pz =
p̃z/
√

mT and fields v = eφ/T and a = eAy/
√

mT for
protons (for H− or electron change sign and/or mass). For
example if Ay = −10−4 T m and φ = −1 V, we get a ∼=

v ∼= −1 for protons (respectively 1 for H− and a ∼= 40,
v ∼= 1 for electrons). The collisional Vlasov equation for
f(z, pz;Py) is

pz
∂f

∂z
− ∂h

∂z

∂f

∂pz
=

1√
T/m

dtf |c (4)

In order to decouple the three species and for the sake of
simplicity, a collisional operator dtf |c for fixed scatterers
is assumed, so that: 1) mean free path length along z is
a constant λi; 2) scattered distribution is isotropic [8] and
maxwellian with temperature T ; in other words for electron
we neglect that energy relaxation time is much greater than
momentum relaxation time according to classical theory;
this incorporates any anomalous electron energy relaxation
[7, 9]. We have

1√
T/m

dtf |c =
|pz|
λi

{
−f +

g(pz)
c1

g(Py − a)
∫ ′
|pz|f

}
(5)

where
∫ ′ =

∫
dpzdPy and g(x) = exp(−x2/2)/

√
2π and

c1 =
∫

dx |x|g(x) =
√

2/π).
Let us separate the current in forward z-direction j+ as

j+ =
∫ +

pzf , j− = −
∫

dPy

∫ 0

−∞
dpzpzf (6)

with
∫ + =

∫
dPy

∫∞
0

dpz . Note that j ≡ j+−j− satisfies
∂j/∂z = 0; and that jΣ ≡ j+ + j− = 2j+ − j. Applying∫ +

to equation 4 we get:

∂j+

∂z
= − j

2λi
−

∫
dPy

∂h

∂z
f(z, 0;Py) (7)

where the first term is the net balance of collisions and the
second the change of j+ due particle turning point pz = 0.

For pz > 0, using the orbit integration and recognizing
that

∫ ′ |pz|f = jΣ in the collisional operator and using the
shorthand ηy = Py − a(z′), we get

f =
∫ z

α

dz′e
−|z′−z|

λi
jΣ

2c1λi

∫ ∞

0

dp′z|p′z|δ(h′−h)g(ηy)g(p′z)

(8)
where α is the lower plasma boundary and the prime indi-
cates quantities at a point on the orbit with the final point
z, not a derivative. The Dirac’s delta makes sure that
p′z is consistent with the final pz; in detail, the condition
h′ − h = 0 is

η2
z + 2āηy + 2b− p2

z = 0 (9)

with ηz = p′z and ā = a(z) − a(z′) and b = −1
2 (ā)2 − v̄

and v̄ = v(z)−v(z′). For pz < 0, eq. 8 is similar, with the
integration range [β, z] and β the upper plasma boundary.
Double turning point orbits are suppressed by collisions.

Observing that ∂zΘ(h′ − h) = −∂h/∂z δ(h′ − h) and
defining

M1(ā, v̄) =
2
c1

∫ +

ηzΘ(η2
z+2āηy+2b)g(ηz)g(ηy) (10)
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with b as in eq. 9, Θ the Heaviside function and now
∫ + =∫

dηy

∫∞
0

dηz , eq. 7 becomes

∂j+

∂z
+

j

2λi
=

∫ β

α

dz′e
−|z′−z|

λi
jΣ
2λi

∂M1

∂z
(11)

which is a closed equation for j+. After its solution for j+

is found as modes j+ = jq exp(qz/λi), n may be easily
computed integrating eq. 8. Indeed, defining

N(ā, v̄) =
∫ ∞

0

dpz ∂M1(ā, v̄ + 1
2p2

z)/∂p2
z (12)

(the p2
z derivative matches the Dirac’s delta in eqs. 8) and

Zp(ku) =
∫ ∞

0

du ekuu/λiN(a(z)− a(z′), v̄) (13)

with p = ±1, where z′ = z − pu is also inside v, we have

n = −j
Z−1(−1) + Z1(−1)

2λi
+ jqe

qz
λi

ZΣ

λi
(14)

with ZΣ = Z−1(−1 + q) + Z1(−1− q).
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Figure 2: Solution for mode equation

Modes

Expanding v̄ = v1(z − z′) + O(z − z′)2 where v1 =
−eEz/T and similarly ā ∼= a1(z − z′), we express both as
function of s ≡ v1(z − z′); in detail ā = 2−1/2c1s where
c1 = 21/2a1/v1. The M1 exact expression

M1 = 1
2erfc

ā2 + v̄

|ā|
√

8
+ 1

2e−v̄erfc
ā2 − v̄

|ā|
√

8
(15)

with erfc(x) = 1 − Φ(x) and Φ the error function, is then
easily plotted as a function of s for several c1 and is appar-
ently well approximated by exp(m−s) for s < 0 and by
exp(−m+s) for s > 0 with coefficient m± = (cc ± 1)/2
and

cc(c1) = c1π
−1/2e−1/c2

1 + Φ(1/c1) (16)

We discuss the case v1 > 0 (retarding field for proton)
only, for simplicity. Substituting in the eq. 11 the trial
solution j+ = j0 + jq exp(qz/λi), we extend the plasma
range [α, β] to−∞,+∞ to simplify results of exp(−m+s)

integration in eq. 11. We find j0 = j(1+L0)/(2L0) where

L0 =
∫

dze
−|s|
v1λi ∂zM

1 = (w− −w+)/(1 + w−)(1 + w+)
with

w+ = v1λi(cc + 1)/2 , w− = v1λi(cc − 1)/2 (17)

and the growth rate q satisfies the third degree equation:

q = − w+

1 + w+ + q
+

w−

1 + w− − q
≡ G(q) (18)

A simple graphical study of G(q)−q shows that all roots
qi are real and bounded, namely

−1−w+ < q1 ≤ −1 ≤ q2 < 0, 1 ≤ q3 < 1+w− (19)

When w− → 0 , q3 → 1 and the other two solutions are
−1,−w+; in general qi are near to this values (see fig. 2
plot). The solution near to −w+, named qm, is particularly
interesting, since it is similar to a Maxwellian factor; note
indeed that

log(j − j0),z =
qm

λi

∼= −eφ,z(1 + cc)
2T

≡ −eW, z

T
(20)

where ,z is z-derivative and W an effective potential; we
get W = 1

2

∫
dz[φ, z+(φ2

,z +2B2
xT/(πm)] approximating

cc for c1 ≥ 1. Moreover, a simple estimate gives

N =
√

π/2 e−v̄erfc
(
	

[√
1
2 (ā)2 − v̄

])
+ O(ā2) (21)

where 	 is the real part, but it loses accuracy for large a1.
Using it in eq. 13, for p = 1 we find v̄ ∼= v1u and thus
Z+ = c8/(v1 − ku) with c8 = (π/8)1/2; expression for
Z−1 is slightly complicate. From eq. 14, we get

nH+ = −jc8

2

(
1

1 +
√

w0
+

1
1 + w0

)
+

jqc8

ezw+/λi

(
1

1 + w+ +
√

(1 + w+)w0

+
1

1 + w−

)
(22)

with w0 = v1λi, showing attenuation of the density (up
to a possible breaking point n = 0). Similar expression
can be derived for the other modes, so that the expectation
of decreasing proton density is confirmed. More work is
needed to include finite boundaries in eq. 11 and, more
important, to investigate the effects of eq. 22 and similar n
in eq. 2.
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