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Abstract

The global-beta correction is one of the optics correc-
tions such as dispersion and xy-coupling corrections to re-
alize a model lattice [1]. In the KEKB B-Factory, it is
performed to regularize the ring optics for achieving high
luminosity. The global-beta function is measured by re-
constructing responses of orbits generated by 6 different
steering magnets per plane. The correction of the beta
function and the phase advance is performed by using the
fudge factors of power supplies of quadrupole magnets.
This correction scheme has been successfully. In the typ-
ical case, the rms of the beta function beat and the beta-
tron tune difference are corrected within 5% and 0.0005,
respectively. In the luminosity run, we can operate the low
energy ring(LER) with the horizontal betatron tune very
close to half-integer(45.5050). In this paper, we will report
in detail the measurement and correction techniques and its
performance in the KEKB operation.

GLOBAL-BETA MEASUREMENT

In our measurement method, we reconstruct both beta
function β(s) and betatron phase advance φ(s) from the
set of the closed orbit distortions(CODs) generated by the
single steering kick. From the first order perturbation the-
ory of the ring, the displacement of the closed orbit is given
as

�χ(s) =

√
βχ(s)

2 sinπνχ

∫
C

�θχ(s′)
√

βχ(s′)

cos (|φχ(s)− φχ(s′)| − πνχ)ds′, (1)

where �θχ(s′) is the distribution of the χ direction kick
and

∫
C

means the integration over one revolution of the
ring. The direction symbol χ represents either x or y direc-
tion.

In the KEKB ring, we can observe both the betatron
tune νχ and the COD χ(s) at the beam position moni-
tors(BPMs). Assuming that the steering does not overlap
with the BPMs, the COD at i-th BPM generated by j-th
steering is obtained as

�χj
i =

�θj

2 sinπν

√
βM

i

√
βS

j cos (|φM
i − φS

j | − πν), (2)

where superscripts M and S indicate the BPM and the steer-
ing, respectively. �θj is the kick angle by j-th steering.
The sign of φM

i − φS
j is given by the geometry of the ring,

because the betatron phase advance is monotonic.

For convenience, we introduce following notations:

fj =
�θj

2 sinπν
, Si j = sign (φM

i − φS
j ), (3)

X l
i =

√
βl

i cosφl
i, Y l

i =
√

βl
i sinφl

i (l = M, S). (4)

Using these notations, Eq. 2 is rewritten as follows:

�χj
i = (cosπν fjX

S
j − Si j sin πν fjY

S
j )XM

i

+ (cosπν fjY
S
j + Si j sin πν fjX

S
j )Y M

i (5)

= (cosπν XM
i + Si j sin πν Y M

i )fjX
S
j

+ (cosπν Y M
i − Si j sin πν XM

i )fjY
S
j . (6)

To obtain the beta function, we fit Eq. 5-6 to the set
of the measured closed orbits by using the least square
method. The residual error sum of squares looks like the
quadratic form of either {X M

i , Y M
i } or {XS

j , Y S
j } coordi-

nates. Thus, the residual error is easily improved by in-
terleaving two types of the linear fit as follows. At the
first step, the temporary {XM

i , Y M
i } is given by using the

model optics adjusted with the measured betatron tune.
At the second step, {X ′S

j , Y ′S
j } is calculated from given

{XM
i , Y M

i } by using the least square fit against Eq. 6. At
the third step, improved {X ′M

i , Y ′M
i } is obtained from cal-

culated {X ′S
j , Y ′S

j } by using the least square fit against
Eq. 5. Both second and third step are iterated until the
residual error sum is converged. To stabilize the itera-
tion method, the normalization of both β(s) and φ(s) is
requited, because the fitting residual of Eq. 2 is only de-
termined by both the beta function product and the beta-
tron phase difference. In order to normalize {X i, Yi}, we
scale {Xi, Yi} after each fitting step to keep absolute norm:∑

(|Xi|+ |Yi|).
This iteration method should be converged because of

monotone decreasing of the residual error sum of squares,
but the convergence speed is very slow. The minimum
point obtained as the limit of our iteration method is the
fixed point of the mapping defined by one iteration loop. In
the practical use, we use the Newton-Raphson method with
the numerical differential to find the fixed point of the map-
ping from {XS

j , Y S
j } to {X ′S

j , Y ′S
j }, because the length

of the steering side vector is shorter than the length of the
BPM side vector.

GLOBAL-BETA CORRECTION

Assuming that the measured optics distortion is caused
by the gradient field error of the quadrupole field, we try to
correct the optics distortion by tuning the quadrupole field
using the amplitude fudge factor (AF) of the quadrupole
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magnet power supply. Although the major source of the op-
tical deformation is the alignment offsets of the sextupoles,
they can be correctable by the nearby quadrupole settings.
The beta function distortion by the gradient field error is
given as

�βχ(s)
βχ(s)

= − 1
2 sin 2πνχ

∫
C

�Kχ(s′)βχ(s′)

cos (2|φχ(s)− φχ(s′)| − 2πνχ)ds′, (7)

where �Kχ(s′) is an error distribution of gradient field in
the χ plane. In the term of the quadrupole field strength
(K1 ≡ 1

Bρ
∂By

∂x ), �Kx(s′) and �Ky(s′) are described as
�K1(s′) and−�K1(s′), respectively. The phase modula-
tion and the tune shift are given by following integral forms

�φχ(s) =
∫ s

0

(
1

βχ(s′) +�βχ(s′)
− 1

βχ(s′)

)
ds′

=
1

2 sin 2πνχ

∫
C

�Kχ(s′)βχ(s′)
{
2 sin 2πνχ sin2 min(φχ(s)− φχ(s′), 0)

+ sinφχ(s) cos (2φχ(s′)− φχ(s)− 2πνχ)} , (8)

�νχ =
1
4π

∫
C

�Kχ(s′)βχ(s′)ds′. (9)

The perturbation of the gradient field is described by us-
ing the amplitude fudge factor for i-th quadrupole family
(AF i) as follows

�Ki
1(s) = Ki

1(s)�AF i, �AF i ≡ AF i − 1, (10)

where K i
1(s) is the designed field distribution of i-th

quadrupole. Integrating Eq. 7-9 under Eq. 10, the response
matrix from the quadrupole family �AF i to the optics
functions �β(s)/β(s), �φ(s) and �ν is obtained. In or-
der to determine the correction fudge factor, we minimize
the following residual error sum of squares constructed by
the beta function, phase advance and betatron tune of the
model optics and the measurement

e2 ≡
( π

sin 2πν

)2 ∣∣�ν − (νmeasured − νmodel)
∣∣2

+
∑

(
∣∣∣∣�β(s)

β(s)
− βmeasured(s)− βmodel(s)

βmodel(s)

∣∣∣∣
2

+
∣∣�φ(s) − (φmeasured(s)− φmodel(s))

∣∣2), (11)

where
∑

means the sum over the measured points. The
fudge factor �AF i minimizing Eq. 11 is obtained by the
Singular Value Decomposition(SVD) of the response ma-
trix generated from Eq. 7-10. The obtained fudge factor
shows the correction factor for fitting the model optics to
the measured one. Thus, the optics error can be compen-
sated by updating the fudge factor of the quadrupole mag-
net power supply using following procedure

AF i
new =

AF i
old

1 +�AF i
. (12)

In Eq. 11, the equal weighting is applied to the indi-
vidual residual error squares. If the variance of the mea-
sured value is known, the individual residual error square
in Eq. 11 should be multiplied by the inverse square of the
standard deviation. In the actual use, the extra weighting
factor is applied in order to correct preferentially the spe-
cific optics parameter (ex. betatron tune, beta function at
interaction region).

For using the global-beta measurement described in the
previous section, we must pay attention to the measurement
uncertainty. Our measurement method can not determine
both the scaling factor of the beta function and the origin of
the phase advance, because Eq. 2 is conserved by either the
phase origin change or the beta function scale change keep-
ing βM

i βS
j . If the optics distortion is enough small, such

uncertainty is canceled out by normalization using model
optics. In another case, this uncertainty problem can be
avoided by either introducing the fudge factor for the beta
amplitude and the phase origin to Eq. 2 as the unknown
quantity or constructing the residual error sum of squares
from the relative value between the measurement positions.

MEASUREMENT AND CORRECTION
AT THE KEKB RINGS

In our site, the global-beta measurement and correction
method shown in the previous sections are implemented as
an automation tool on SAD[2], which has the script inter-
preter including accelerator model, EPICS[3] channel ac-
cess and GUI toolkit based on Tcl/Tk[4]. Using such au-
tomation tool, we correct the ring optics after every regular
maintenance whose interval is normally two weeks. In the
following subsections, we present the detail of our imple-
mentation and the performance of our correction system.

Measurement at the KEKB Rings

In the actual measurement at the KEKB rings, we use 6
steerings for the horizontal beta measurement and 6 steer-
ings for the vertical beta measurement. For avoiding the
degeneration of the measured COD set, the betatron phases
of the steering magnets are spreaded out. We exclude the
horizontal steering among the dispersive section for avoid-
ing the momentum shift. As the KEKB proper condition,
the 2.5π cell structure with non-interleaved chromaticity
correction is used for arc cells[5]. In this structure, the sex-
tupole pairs are placed without overlapping. The transfer
matrix between sextupole pair is adjusted to −I ′, which
is a negative identical 4 by 4 transformation except the
−I ′12 and −I ′34 components, in order to cancel out the
quadrupole field generation by the closed orbit distortion
propagated from outside of the sextupole pair. Therefore,
we can not use the steering magnet between the sextupole
pair for the measurement, because the single steering kick
between the sextupole pair makes the serious tune shift and
the optics distortion.

For keeping the amplitude of the COD, the steering kick
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(a)Measurement before Correction (b)Measurement after 2nd Correction

Figure 1: Measurement results before(a) and after(b) correction. In 1st column of graphs, current and desired values of AF
are shown by green and red points, respectively. The measured value of phase advance error and square root ration of beta
function are shown in 3rd and 5th column, respectively. 2nd and 4th column shows the prediction after this correction. In
these graphs, blue and red lines correspond with horizontal and vertical optics function, respectively.

angle is scaled by the square root of the beta function at
the steering magnet. The typical kick angle for the COD
measurement is about 40µrad for 30m beta function. The
typical COD amplitude at the arc section is about 0.5mm.
The iteration of the Newton-Raphson method in the beta
function fitting is normally converged until 4 iterations.
The typical rms of the residual error of the COD fitting
is about 1 ∼ 2µm except the vertical measurement of the
High Energy Ring(HER). The typical rms of the vertical
fitting residual at the HER is about 4µm.

Correction at the KEKB Rings

In our global-beta correction, the quadrupoles related
with −I ′ arc cell condition and the quadrupole at the in-
jection point are excluded from the corrector quadrupoles.
In the usual correction, we apply 10 times extra weighting
for tune errors in Eq. 11 and 0.05 is used as the relative tol-
erance for truncating small singular values of the SVD of
the response matrix. In the usual case such as a correction
after regular maintenances, the beta correction is normally
converged until 3 iterations. After corrections, the typical
residual error of the beta function �β/β is about 5% in
rms and the betatron tune is corrected into ±5 × 10−4. In
the present KEKB rings, the amplitude fudges of mostly
quadrupoles are distributed within ±5 × 10−3. In the se-
quence of the beta corrections at the KEKB ring startup
process, the typical range of the displacement of the fudge
factor is ±2× 10−4.

As an extra corrector, we can use a cosine like bump
around sextupole pair. By making the same directional dis-
placement of the horizontal orbit at the sextupole pair, the
sextupole pair of the chromaticity correction is effectively

worked as a quadrupole. These sextupole bumps are used
to correct the optics distortion localized into the arc section.

Figure 1 shows an example of the beta measurement be-
fore and after correction. At the first measurement before
correction, the relative error of the beta function �β/β
exceeds 15% in rms and the betatron tune shift exceed-
ing 5 × 10−3 is observed. At the measurement after two
global-beta correction, the relative error of the beta func-
tion is converged into 5% in rms and the betatron tune shift
is corrected into 5× 10−4. The interval between these two
measurement is about 24 minutes that includes a XY cou-
pling correction and a dispersion correction procedure.

SUMMARY

The global-beta measurement and correction presented
in previous sections is used as a part of the optics correc-
tion of the KEKB ring startup process. It is very helpful to
operate the KEKB rings nearby the half-integer resonance
line.

REFERENCES

[1] KEKB Accelerator papers, NIM Section A, Vol. 499,
Issue 1,p. 1-233(2003)

[2] Strategic Accelerator Design, http://acc-physics.kek.jp/SAD/

[3] Experimental Physics and Industrial Control System,
http://www.aps.anl.gov/epics/

[4] Tool Command Language and Tk GUI toolkit,
http://www.tcl.tk/software/tcltk/

[5] KEKB B-Factory Design Report, KEK Report 95-7(1995),
http://www-acc.kek.jp/kekb/publication/

KEKB design report/KEKB%20Design%20Report.html

Proceedings of 2005 Particle Accelerator Conference, Knoxville, Tennessee

0-7803-8859-3/05/$20.00 c©2005 IEEE 804


