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Abstract 
Electronic damping of microphonic vibrations in 

superconducting rf cavities involves an active modulation 
of the cavity field amplitude in order to induce 
ponderomotive forces that counteract the effect of 
ambient vibrations on the cavity frequency. In lightly 
beam loaded cavities, a reduction of the microphonics-
induced frequency excursions leads directly to a reduction 
of the rf power required for phase and amplitude 
stabilization. Jefferson Lab is investigating such an 
electronic damping scheme that could be applied to the 
JLab 12 GeV upgrade, the RIA driver, and possibly to 
energy-recovering superconducting linacs. This paper 
discusses a model and presents simulation results for 
electronic damping of microphonic vibrations. 

INTRODUCTION 
One of the early challenges in the application of rf 

superconductivity to particle accelerators, especially ion 
accelerators, was the control and stabilization of the phase 
and amplitude of the accelerating fields in the large 
number of independent cavities. Ambient noise and 
microphonics can cause frequency variations that are 
larger than the bandwidth of the resonators.  

Historically, high-velocity superconducting resonators 
have been used in high-current applications where most of 
the rf power was transferred to the beam.  Recently, 
however, high-velocity elliptical-type resonators will be 
used in applications where the beam loading will be small 
and the need for phase and amplitude control will dictate 
most or all the requirements for rf power. 

In the case of no beam loading, the minimum amount of 
rf power required for phase stabilization by negative 
feedback is given by P U δω=  [1-3], where U is the 
energy content at operating gradient and δω  is the 
maximum amount of detuning at which phase lock is to 
be maintained. δω  has two components: a static 
component given by the accuracy with which the average 
cavity resonance frequency can be matched to the master 
reference frequency and a dynamic component due to 
microphonics-induced frequency excursions.  With a well-
designed mechanical tuning system, the static component 
can be made much smaller than the dynamic component, 
and any reduction of the microphonics would lead to a 
corresponding reduction in the rf power requirements. 

Mechanical stiffening of resonators is often used to 
reduce the Lorentz detuning and may also reduce, to some 

extent, the microphonics.  Mechanical damping has been 
very effective in some low-velocity structures [5], but has 
not yet been implemented in elliptical-type cavities.  
Electronic damping has also been used in low-velocity 
structures [2]; in this paper, we present an analytical study 
of electronic damping as a possible means of reducing 
microphonics in superconducting cavities. 

MODEL AND EQUATIONS  
We will use the same model described in more details 

in [1-4], namely a resonator operated in a self-excited 
loop. Since microphonics damping would be useful only 
in cavities that are lightly beam-loaded, we have ignored 
the influence of the beam current in the present study.  In 
[1] it was found advantageous to operate the loop slightly 
off resonance on the low frequency side ( 0lθ < ); this 
introduced a small amount of coupling between phase and 
amplitude feedback which could be used to damp the 
microphonics.  In [3] a feedback phase shifter ( fθ ) was 
added that could be used to provide the same amount of 
coupling while still operating the unlocked self-excited 
loop on resonance ( 0lθ = ). 

 
Figure 1: Transfer function representation of the system. 

 
 A block diagram of such a configuration can be found 

in [3,4] and a transfer function representation of the 
system is shown in Fig. 1 where: 
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Gµ  represents the coupling between the field amplitude and 
cavity frequency which is responsible for the 
ponderomotive instabilities [1], and Gµ¢  represents the 
coupling between external sources and cavity frequency.  

µΩ  is the frequency of the mechanical mode of the cavity, 
and µτ  is its decay time. 

The residual amplitude and phase errors due to 
fluctuations of the cavity eigenfrequency ( exδω ) are 

1( ) ,ex ta aa av = F G G F F Dϕ ωδ δω -- -  
1(1 )ex a aa+ F G = Dωδϕ δ - , 
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and ( )ex G n tµδω = ¢ , where ( )n t  represents the external 
source of vibration. 

PERFORMANCE OF STABILIZATION 
SYSTEM 

If we assume that the fluctuations in resonator field 
phase and amplitude are due to fluctuations in cavity 
eigenfrequency, and that these in turn are due to the 
excitation of the mechanical mode by white noise of 
spectral density 2A , then the mean square values for the 
cavity frequency, and field amplitude and phase are given 
by [1]: 
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where  1( )taa aa aG - G F F DGFϕ ω
-= -  and 1(1 )a aaG + F G Dϕ

-=  

The mean square errors 2 2 and vδ δϕ< > < > can be 
calculated in the most general case, but we will present 
the results under the following assumptions: no beam 
loading, loop phase adjusted so the unlocked cavity 
operates on resonance ( 0)lθ = , small feedback angle 
( 1)fθ , large proportional feedback gains 
( , 1,ak kϕ µτ Ω ), and / 1µτ τ . 

DAMPING BY FEEDBACK PHASE SHIFT 
As shown in [3,4], the introduction of a feedback phase 

shifter fθ  introduces a coupling between the phase and 

amplitude feedback that can reduce the phase error at the 
expense of introducing an amplitude error.  The rms phase 
and amplitude error are calculated to be [4] 
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DAMPING BY FREQUENCY FEEDBACK 
The effectiveness of microphonics damping as 

described in the previous section depends on the amount 
of amplitude feedback and is reduced as the feedback gain 
is increased.  A more effective way to damp microphonics 
would be to intentionally modulate the amplitude 
reference by an amount dependent on the instantaneous 
frequency offset between the cavity and the master 
reference with the appropriate phase shift in order to act 
as a damping mechanism. 

As shown in [3], in the absence of beam loading and 
with no feedback phase shift ( 0fθ = ), the signal driving 

the resonator is of the form 1g go gV V v i tδ δÈ ˘= + +Î ˚ , where 

( )= /g a av F v F V Eδ δ Ε- = - - , and E is the amplitude 
reference.  A modulation of the amplitude reference: 

( )0= 1 eδΕ Ε +  introduces an additional term in the signal 
driving the resonator: 

 ( ) ( ) ( )g a as F s F e sδν δν δ= - + . 

When the phase feedback gain ( kϕ ) is sufficiently high, 
the “in quadrature” feedback signal tδ  is directly 
proportional to the instantaneous phase error which, in 
turn, is proportional to the instantaneous difference 
between cavity and reference frequency.  Thus  tδ  is an 
appropriate signal to provide a modulation of the 
amplitude reference: ( ) ( ) ( )e s F t s s F Fω ϕ ωδ δ δϕ=- = , where 
Fω is the frequency feedback transfer function. 

In order to be effective as a damping mechanism, the 
frequency feedback needs to introduce a π/2 phase shift 
between the frequency error and the amplitude 
modulation.  For this reason, a good choice for Fω is an 
integral-type feedback of the form: 

F k
s

µ
ω ω

Ω
= - . 

The mean square frequency, phase, and amplitude 
errors can be calculated [4] and are: 
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SIMULATION RESULTS 
A Matlab model based on the transfer function 

representation in Fig. 1 has been developed for a JLab 12 
GeV upgrade cavity operating in a self-excited loop at 
20 MV/m.  This linear model has been used to compare 
the two damping schemes described in this paper.  Both 
schemes can be useful at damping microphonics but the 
simulations confirm the analytical results that frequency 
feedback is the more effective of the two at reducing the 
cavity phase error while introducing smaller amplitude 
errors. 

The simulation results shown in Figs. 2 and 3 assume a 
cavity operating at 20 MV/m with an electromagnetic 
coupling constant  23.69Hz/(MV/m)kµ =  and a loaded 
quality factor QL=3×107, and with a single mechanical 
mode at / 2 34 Hzµ πΩ =  and decay time 300 msec.µτ =   
The amplitude and phase controllers are purely 
proportional and have fixed gains of 100.  The frequency 
feedback controller used in the simulations is 

1

.
10

F k s µ
ω ω µ

Ω
Ω

-
Ê ˆ

= - +Á ˜Ë ¯
 The simulations show the 

residual phase and amplitude errors when the mechanical 
mode is driven by a sinusoidal driving term n(t) whose 
frequency is varied between 25 and 45 Hz; the amplitude 
of n(t) is chosen to cause microphonics of amplitude 

/ 2 10Hzexδω π =  at the frequency of the mechanical 
mode.   

It is apparent from Figs. 2 and 3 that, for the assumed 
parameters, the frequency damping via frequency 
feedback is far more effective in reducing the phase error 
while producing a modest amplitude error. 

CONCLUSION 
Analytical and numerical models for studying 

electronic damping of microphonics in lightly beam-
loaded superconducting cavities have been developed.  
Simulations have demonstrated the effectiveness of 
damping by frequency feedback. 
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Fig.2: Residual phase (upper) and amplitude (lower) error 
as function of driving frequency for several feedback 
phase shifts. 

 

 

 
Fig.3: Residual phase (upper) and amplitude (lower) error 
as function of driving frequency for several frequency 
feedback gains. 
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