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Abstract

Model-independent methods to measure linear optics
functions have been tested in turn-by-turn data from the
ESRF storage ring. The methods do not necessitate neither
the knowledge of the model nor magnetic element manip-
ulation. They use only the positions measured in consecu-
tive BPM of betatron oscillations issued by small transverse
kicks. The phase advances and tunes necessary to construct
the transfer matrices are issued by refined Fourier analysis.
Measurements of off-momentum optics parameters using
longitudinal beam excitation are also presented.

OUTLINE AND EXPERIMENTAL SETUP

Several techniques for measuring linear beam optics
functions in rings have been proposed in the last decade [1].
Two methods among them, and their variants have been
the most popular: one uses the phase advances between
three BPM measured by harmonic analysis of turn-by-turn
(TBT) data and the machine model in order to reconstruct
the beta variation around the ring [2]. The second is based
on a response matrix construction issued by the variation of
the orbits or tunes when machine elements like steerers or
quadrupoles are varied [3]. The linear optics can be recon-
structed by a machine model fitted to the beam response
through a Singular Value Decomposition (SVD) algorithm.
The main drawback of the first approach is the need of an
accurate machine model which most of the times does not
exist. The second method necessitates manipulation of ma-
chine elements which, apart from distorting the machine
itself by introducing higher order effects, can be quite time
consuming, e.g. a complete steerer response matrix for the
ESRF storage ring takes around 30 minutes.

Recently, a Model Independent Analysis method has
been developed, based on a spatio-temporal mode decom-
position which is obtained by an SVD of the matrix formed
by beam orbit histories measured on a large number of
BPM [4]. Through this technique, it was possible to mea-
sure phase advances and beta functions at all BPM of the
APS storage ring [5]. In this paper, an alternative fast
method based on refined Fourier analysis of betatron os-
cillations issued by small transverse kicks and an iterative
TBT linear transfer matrix reconstruction is proposed. This
method along with novel techniques enables the estimation
of off-momentum beam parameters when applied to TBT
data issued by longitudinal beam excitations.

Three different equipments producing the necessary
beam excitation for the TBT measurements are available
in the ESRF storage ring, enabling the experimental explo-
ration of the full 6D phase space: an horizontal injection

kicker, a dedicated vertical kicker and an RF phase shifter.
Note that both horizontal and vertical maximum kicker am-
plitudes of 10 and 7 mm are limited due to the dynamic
and physical aperture, respectively. The same is true for
the maximum longitudinal excitation.

Table 1: Kicker parameters.

Type
Hor. Vert. Phase

Kicker Kicker Shifter
Pulse length [µs] 1 1 Output of the

master source
with maximum
kick of
dp/p ≈ 1.5 %

Rep. rate [Hz] 10 1-100
Defl. angle [mrad] 2 0.6
βx,βy [m] 5 35
Max. ampl. [mm] 10 7

A bunch train filling 1/3 of the machine with a current
of 10 mA is kicked and beam positions are recorded on
the standard “1000-turn” system [6] comprising 224 BPM.
This system provides a “pseudo”-TBT acquisition, as the
position is reconstructed from the multi-plexed signal on
each electrode in four different kicks [6]. The linearity is
guaranteed due to a signal pre-processing algorithm based
on the BPM electro-magnetic model. The data is averaged
over many groups of kicks (16 to 256) in order to provide a
resolution of 1µm. Apart from the high resolution the av-
eraging smoothes out any kicker jitter and BPM calibration
error.

TRANSFER MATRIX RECONSTRUCTION
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Figure 1: Horizontal and vertical phase advances measured
on all BPM of the 16 cells (left) and theoretical horizontal
(blue) and vertical (red) values from the perfect machine.

Neglecting coupling, damping and non-linear effects, the
transfer matrix between BPM 1 and 2 provides two equa-
tions involving positions, angles and the linear optics’ func-
tions on these two locations. There are seven unknowns,
namely the two slopesx′1,2, betaβ1,2 and alphaα1,2 func-
tions and the phase advanceµ1 �→2. Alternative ways have
to be found for estimating some of these parameters in
order to reconstruct the transfer matrix. The phase ad-
vance can be measured by an alternative of the harmonic
analysis applied at LEP [2], using the frequency analysis
of Laskar [7]. The method approximates the TBT posi-
tions by a quasi-periodic series:x(s) = A1e

iφ1eiν1t +
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∑N
k=2 Akeiφkeiνkt where the first term provides the tune

ν1, with a very high precision [7]. The phase advances be-
tween consecutive BPM are estimated by the difference of
the Fourier phasesφ1. In Fig. 1, the measured horizontal
and vertical phases are plotted and superimposed for the 14
symmetric BPM of all 16 cells around the ring. The mea-
sured phase advances are very close to the ones provided by
the perfect model of a completely symmetric lattice, show-
ing an rms difference of only 5%. Another indication of
the precision in the phase advance determination is given
by the difference of the fractional part of the phase advance
in one turn with respect to the tune, which is of the order of
10−3, in both planes.
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Figure 2: Mean values of the measured horizontal (blue)
and vertical (red) transverse invariants for the recorded
number of turns.

Although the Fourier amplitudesA1 can be used for es-
timating the beta function on each BPM, a different ap-
proach will be followed. The next step is to estimate the
angles. This can be done by using a “virtual” BPM, i.e.
shifting the Fourier approximation of the position byπ/2
which is equivalent to a differentiation with respect to the
independent variable [2]. An alternative way can be used
in machines as sychnotron light storage rings or colliders
where a few pick-ups are located on straight sections on ei-
ther sides of the insertion devices or interaction points. In
the case of the ESRF, 64 out of 224 BPM are on straight
sections. In that case, the angles are known by the position
and the distance between the BPM. Using the 1-turn ma-
trix, the beta and alpha functions on these BPM can be es-
timated. Now the number of unknowns is limited to three,
i.e. the beta and alpha functions and the angles in the con-
secutive BPM. The third equation needed to estimate these
parameters can be found by building a turn-by-turn “invari-
ant” ε = γx2 + 2αxx′ + βx′2 on each BPM located in the
straight sections. This parameter can be considered con-
stant for one turn and indeed its rms variation taken on all
straight section BPM is of the order of 10−2. Its oscillation
can be observed in Fig. 2, where the typical decoherence
and re-coherence due to chromaticity can be observed in
both planes.

Using the “invariant” and the transfer matrix equations,
the beta and alpha functions of the BPM upstream and
downstream of the ones located in the straight section can
be measured. The solutions are propagated in order to es-
timate all betas and alphas up to the next straight section.
This process can be repeated for each turn up to the point
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Figure 3: Horizontal (left) and vertical (right) beta func-
tions measured on all BPM of the 16 cells (top) and theo-
retical values computed from the perfect model (bottom).

that the requested accuracy is obtained. Actually, the con-
vergence of the method is quite fast, giving a precision of
the order of less than 1% in around 50 turns. The mea-
sured horizontal and vertical beta functions are shown in
Fig. 3 along with the theoretical values estimated by the
symmetric model. The agreement between the model and
measurements is good considering the fact that the model is
an idealisation of the actual machine. A better evaluation
can be achieved when comparing measurements done by
two different methods: in Fig. 4, the horizontal and vertical
normalised beta variation on each symmetric BPM is plot-
ted and compared to the beta estimation using a method
based on steerer response matrix analysis. Both methods
show an equivalent beta variation, i.e. the TBT method pre-
dicts an rms horizontal beating of 11% and vertical beating
of 10% whereas the response matrix method gives 7% on
horizontal and 11% on vertical.
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Figure 4: Horizontal (blue) and vertical (red) beta variation
measured on all BPM of the 16 symmetric cells (left) and
measured beta values (right) from a response matrix analy-
sis (points) as compared to the perfect machine (lines).

OFF-MOMENTUM OPTICS

Off-momentum optics measurements are possible
through the TBT oscillations issued by longitudinal beam
excitations coupled with transverse kicks. The longitudinal
kicks are produced by pulsing a phase shifter in the output
of the storage ring RF, in a step like form, for a time
longer than the longitudinal damping time. The TBT
measurement system is synchronised with the fall part of
the pulse. In that way, clean transverse oscillations with
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the synchrotron frequency are produced. An example of
the positions recorded on a dispersive BPM, are shown
in Fig. 5. The phase shifter enables the application of
very large momentum kicks of up to 1.5%. Through the
frequency analysis of the TBT data, the sychnotron tune
can be measured with a normalised precision of better
than10−3. This measurement can be used for calibrating
the RF voltage read-out as in Fig. 5 or other non-linear
longitudinal phase space measurements.
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Figure 5: Momentum oscillations issued by a longitudinal
kick, recorded on a dispersive BPM (left) and sychnotron
tune with respect to the RF voltage (right top) with the asso-
ciated precision (right bottom), using TBT (blue) and syn-
chrotron phase measurements (red).

Horizontal and vertical dispersion along the storage ring
can be measured by the linear fit between the TBT displace-
ments and the momentum spread (Fig. 6). Due to the large
number of turns available, the precision is excellent (it rep-
resents the size of the points). There is also a very good
agreement between this measurement and the one provided
by a classical RF scan with a mean rms difference of 1 %
in the horizontal and 5 % in the vertical plane.
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Figure 6: Horizontal (left) and vertical dispersion measured
by the TBT data issued by longitudinal kicks.

Using the transfer matrix reconstruction method, hori-
zontal off-momentumβ can be measured (Fig. 7). Com-
paring with the on-momentum optics, an off-momentumβ
variation is estimated and plotted around the ring, as in the
bottom part of Fig. 7. Theβ variation presents a character-
istic beta modulation pattern, with an rms off-momentum
β-beating of 8%, for a momentum spread of 1%.

Higher order dispersion can be measured by estimating
the fitted coefficients of a polynomial between the displace-
ments and the momentum spread. An alternative method
can be followed [9], using the fact that the Fourier am-
plitudes ofnQs is associated with dispersionηn of order
n. In particular, the Fourier amplitude of2Qs is A2s =
1
4η2(s)σ2

δ l2 whereσ2
δ , the size of the energy spread and

l the strength of the longitudinal kick. The average mea-
sured Fourier amplitude over symmetric cells around the
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Figure 7: Horizontal off-momentum beta function (top)
and corresponding beta variation with respect to on-
momentum measurements (bottom).
ESRF ring is shown on the left side of Fig. 8. The error
bars correspond to one standard deviation and are associ-
ated to second order dispersion beating.
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Figure 8: Mean amplitude of the spectral line2Qs associ-
ated to second order dispersion (left) and phase difference
of sychno-betatron side-bands versus their order (right).
The slope is associated to chromaticity.

Chromaticity of any order can be estimated by the coef-
ficients of a fitted polynomial between the off-momentum
tune-shift and the momentum spread [8]. Recently, an
interesting measurement was proposed [9] relying on the
Fourier phasesψk of the synchrotron side-bands. Their dif-
ference with respect to the phase of the main Fourier term
ψ0, should beψk − ψ0 = −|k| arctan( lQs

Q′σδ
), i.e. propor-

tional to the orderk [9]. The proportionality factor depends
on the chromaticityQ′. Fig. 8 demonstrates that indeed the
dependence of the phase difference is linear withk. Nev-
ertheless, the slope is not symmetric with respect to zero
as the above formula should be corrected, taking into ac-
count the off-momentum optics beating, as in the case of
the Fourier amplitudes of the side-bands [9].
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