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Abstract 
 A three-dimensional (3D) theory of non-relativistic, 

laminar, space-charge-limited, ellipse-shaped, charged-
particle beam formation has been developed recently [1] 
whereby charged particles (electrons or ions) are 
accelerated across a diode by a static voltage differential 
and focused transversely by  Pierce-type external 
electrodes placed along analytically specified surfaces. 
The treatment is extended to consider whether the diode 
geometry solutions thus obtained are robust to 
perturbations and limitations of the sort likely to be 
encountered in a realistic device: finite extent, part 
misalignment, tolerances for mechanical and thermal 
stresses, etc. Analytic and semi-analytic estimates are 
presented along with simulations utilizing the 3D 
trajectory code, OMNITRAK [2]. It is found that the 
elliptic-beam solution is quite stable and robust, and its 
desirable properties can be maintained in a realistic diode.  

INTRODUCTION 
Electron beams of elongated elliptic cross-sections have 

generated great interest in vacuum electronics, because of 
their low space-charge energy and efficient coupling to rf 
structures when compared to circular beams. It is well-
known that high space-charge reduces conversion 
efficiency in conventional microwave tubes employing 
circular beams. Presently, there are vigorous activities in 
the development of sheet-beam traveling wave amplifiers 
[3,4], klystrons [5], and focusing systems [6,7]. 

In high-intensity ion and electron accelerators, beams 
often exhibit non-laminar flows such as large-amplitude 
density fluctuations, mismatched envelope oscillations, 
emittance growth, chaotic particle orbits, beam 
interception, and difficulty in beam focusing and 
compression. Many of these effects are due to beam 
mismatch or non-equilibrium behavior. Elliptic beams 
may allow simplified and more natural matching [8] 
between beam injectors and commonly used magnetic 
focusing lattices, reducing the emittance growth 
associated with beam mismatch. 

Although elliptic beams present numerous advantages, 
their inherent three-dimensional nature has made diode 
design a challenging process, both analytically and 
numerically. For the applications discussed above, 
desirable beam characteristics include uniform current 
density, parallel flow, and zero magnetic flux threading 

the emitter – properties consistent with one-dimensional 
Child-Langmuir [9] flow, in which the electrostatic 
potential varies as 34z∝Φ , where z  is the beam 
propagation distance. In general, however, such flows are 
difficult to produce. Recent studies of 2D and 3D 
extensions of the Child-Langmuir law in an infinite 
applied magnetic field have shown that the beam exhibits 
significant current density enhancements near the beam-
vacuum boundary. In the absence of an infinite confining 
magnetic field, the beam will tend to spread in phase-
space, resulting in a degradation of beam quality. As 
shown in Ref. [1], it is possible to induce the space-charge 
flow in a 3D system to take the 1D Child-Langmuir flow 
form by calculating a 3D equipotential geometry that is 
consistent with the 1D Child-Langmuir electric field 
within the beam and constructing external electrodes lying 
along the equipotentials as prescribed that focus the beam. 
Such a beam can, in theory, exhibit extremely low 
emittance, laminar flow. 

The equipotential surfaces calculated using the methods 
of Ref. [1], however, are idealizations, and it is an 
important question whether the solutions thus obtained are 
robust to perturbations and limitations of the sort likely to 
be encountered in a realistic device: finite extent, part 
misalignment, tolerances for mechanical and thermal 
stresses, etc. Analytic and semi-analytic estimates are 
presented along with 3D simulations utilizing the 3D 
trajectory code, OMNITRAK [2], and it is found that the 
elliptic-beam solution is quite stable and robust, and its 
desirable properties can be maintained in a realistic diode. 

ELLIPTIC GUN GEOMETRY 
We consider a non-relativistic charged-particle beam of 

length d  and elliptic cross-section with semi-major axis 
a  and semi-minor axis b , as shown in Fig. 1. The 
charged particles are emitted from a flat elliptic plate, held 
at potential 0=Φ , in the 0=z  plane and collected by 
another flat elliptic plate, held at potential dΦ=Φ , in the 

dz =  plane. The cold fluid equations describing the beam 
interior are ,42 qnπ−=Φ∇  ( ) ,0=⋅∇+∂∂ Vntn  and 

( ) ( ) ,Φ∇−=∇⋅+∂∂ mqt VVV  for the region 
12222 ≤+ byax  and dz ≤≤0 . In these equations, V  

is the flow velocity, and n  is the density of particles, each 
of mass m  and charge q . Note that, consistent with the 
non-relativistic approximation, we neglect any self-
magnetic field. In the beam exterior, the potential satisfies 
Laplace’s equation, .02 =Φ∇  
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Figure 1: Elliptic charged-particle beam diode shown in 
the x-z and y-z planes. The beam has semi-major axis a 
and semi-minor axis b, emitted at potential 0=Φ  and 
collected at potential dΦ=Φ  after propagating a 
distance d along zê . 

The 1D steady-state solution to the interior problem 
defined by the cold fluid equations can be obtained by 
using the plate potentials as boundary conditions for 
Poisson’s equation and imposing the constraint that 
particles emerge from the 0=Φ  emitter with zero 
velocity, i.e. the space-charge-limited boundary condition. 
This results in the well-known 1D Child-Langmuir (C-L) 
[12] solution for laminar, space-charge-limited flow with 

( ) ( ) ( ) 32212ˆ dzmqz dz Φ= eV , ( ) ( )( ) 3229 −Φ= dzqdzn d π , 

and ( ) ( ) 34dzz dΦ=Φ . For example, an electron diode of 
length 11.4=d mm and diode voltage 29.2=Φd kV 
produces a current density of 1.51 2cmA . 

A 3D cold-beam space-charge-limited emission 
simulation using the commercially-available ray-tracing 
code OMNITRAK is shown in Fig. 1 for a 6:1 elliptic beam  
using the example parameters 73.3=a mm and 

62.0=b mm. A variable-resolution computational mesh is 
employed with x -spacing of 0.05 mm for 40 ≤≤ x mm 
and 0.05 mm for 104 ≤≤ x mm, y -spacing of 0.05 mm 
for 10 ≤≤ y mm and 0.2 mm for 81 ≤≤ y mm, and z -
spacing of 0.05 mm for 4.00 ≤≤ z mm and 0.1 mm for 

104.0 ≤≤ z mm. The mesh resolution is higher in x  and 
y  across the cross-section of the beam, and in z  where 

the beam leaves the emitter as shown in Fig. 1. Nearby 
computational nodes are shifted to conform to the 
electrode surfaces using the OMNITRAK surface flag. 
Neumann boundaries were used for the symmetry planes 
of the beam as well as for the outer boundaries of the 
mesh, which is shown in Fig. 1 along with computed 
equipotentials and particle trajectories projected to the 

0=x  and 0=y  planes. The entire simulation runs in 
approximately 30 minutes on a 3 GHz personal computer. 

The beam produced by the simulation is essentially 
parallel, laminar, uniform density Child-Langmuir flow. 
Beam laminarity is often characterized by the rms beam 
emittances ( ) 21222 xxxxx ′−′≡ε  and 

( ) 21222 yyyyy ′−′≡ε , where the averages of 

transverse particle position ( )yx,  and divergence 
( ) ( )dzdydzdxyx ,, ≡′′  are taken over a slice of the beam 
at dz = . For a uniform density elliptic beam, these 
emittances can be related to effective beam temperatures 
[10] by the relations ( ) 21

, 8 dxeffx qkTa Φ=ε  and 

( ) 21
, 8 dyeffy qkTb Φ=ε . Using the example parameters of 

Fig. 1, the OMNITRAK simulation shown predicts the 
effective beam temperatures 280, =xeffT K and 

1700, =yeffT K.  

PARAMETRIC ROBUSTNESS 
The effective beam temperatures of the previous section 

are not meaningful in practice beyond their use as a 
measure of the minimum beam temperature growth 
associated with the gun optics.  
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Figure 2: The effective beam temperature effT  is plotted as 
the termination radius of the beam-focusing electrodes is 
varied. The circles indicate xeffT , , while the squares 

indicate yeffT , . 

The theory of Ref. [1] computes equipotentials 
extending infinitely far from the beam. In practice, 
electrodes lying along these equipotentials will have a 
finite length, and it is important to assess the impact of the 
edge effects thus admitted on the beam. Since the 
potential satisfies Laplace’s equation in the free-space 
region outside the beam, we expect that electrostatic 
potential variations caused by localized perturbations of 
the electrode geometry will be exponentially decaying 
with distance from the perturbation point. We test this 
hypothesis by performing several cold-beam OMNITRAK 
simulations where the radial extent of the electrodes is 
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varied, while the Neumann boundaries at the edge of the 
simulation region are kept constant. The effective beam 
temperatures at the anode are shown as a function of 
electrode radius in Fig. 2. We see that the influence of 
electrode structure beyond 6mm in radius is minimal. 
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Figure 3: The effective beam temperature, effT  is plotted 
as the emitter is shifted (a) in the transverse x-y plane and  
(b) in z. The circles indicate xeffT , , while the squares 

indicate yeffT , . In (a), the solid circles and squares 
represent shifts along x, while the open circles and 
squares represent shifts along y. 

While the electrode length study establishes the 
insensitivity of the beam quality to geometry 
perturbations far from the beam, we must allow for 
machining tolerances in the cutting and alignment of parts 
close to the beam as well. Several cold-beam OMNITRAK 
simulations were performed with small shifts in the 
emitter stalk position, and results are shown in Fig. 3. The 
greatest sensitivity is observed with respect to transverse 
misalignments – precise emitter positioning within 0.02 
mm is desirable to minimize beam temperature growth. 

A hot thermionic emitter is often thermally isolated 
from the focus electrode by a vacuum gap. We vary the 
elliptical gap width by a single parameter, gδ , which 
represents the difference between the semi-major/minor 

radii of the inner edge of the focus electrode and the semi-
major/minor radii of the emitter, and show the results in 
Fig. 4. 

As expected, for large values of the gap, the electrodes 
no longer impose the proper boundary conditions on the 
beam edge, and thus emittance growth is seen. We find 
that, a gap thickness greater than 0.05 – 0.1 mm would 
not be desirable.   
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Figure 4: The effective beam temperature, effT  is plotted 

as the vacuum gap thickness gδ  around the emitter is 

varied. The circles indicate xeffT , , while the squares 

indicate yeffT , . 

CONCLUSION 
The sensitivity of the electrode specification theory of 

Ref [1] to physical geometry and machining limitations 
such as finite extent, part misalignment, and tolerances for 
mechanical and thermal stresses is established. The 
greatest sensitivity is seen to transverse misalignments of 
the emitter stalk. 
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